redex2coq: towards a theory of
decidability of Redex's reduction semantics

Mallku Soldevilal, Rodrigo Ribeiro?, Beta
Ziliani3

September, 10 - 15th International Conference on
Interactive Theorem Proving (ITP 2024) - Thilisi,
Georgia

IFAMAF, UNC (LIIS Group) & CONICET (Argentina)
2DECOM, UFOP (Brazil)
3SFAMAF, UNC (LIIS Group) & Manas.Tech (Argentina)

Spoiler...

Spoiler...

P
A Semantics for Context-Sen: e Reduction Semantics

Casey Klein', Jay McCarthy?, Steven Jaconette!, and Robert Bruce Findler!

! Northwestern University
2 Brigham Young University

Absent Redex features

Abstract. This paper explores the semantics of the meta-notation used in the
style of operational semantics introduced by Felleisen and Hieb. Specifically, it
defines a formal system that gives precise meanings to the notions of contexts,
and plugging left implicit in most expositions.
This semantics is not naturally algorithmic, so the paper also provides an algo-
rithm and proves a correspondence with the declarative definition.
The motivation for this investigation is PLT Redex, a domain-specific program- ..
ming language desiged to support Fellisen Hieb-tyl semantics, This syl of Decision procedures
semantics is the de-facto standard in operational semantics and, as such, is widely
used. Accordingly, our goal is that Redex programs should, as much as possible,
look and behave like those semantics. Since Redex’s first public release more than
seven years ago, its precise interpretation of contexts has changed several times,
as we repeatedly encountered reduction systems that did not behave according to
their authors” intent. This paper describes the culimation of that experience. To
the best of our knowledge, the semantics given here accommodates even the most
complex uses of contexts available.

Deep embedding

redex2coq

Summary

Summary

@ Redex.
o Problem.
@ Proposal.

@ redex2coq : Redex — Coq
o RedexK.

o Challenges for the mechanization in Coq.

e Ongoing development.

e Future work.

@ Conclusion.

redex2coq

Redex

Redex

@ DSL built on top of Racket.

@ Fast mechanization of:
o Reduction semantics with evaluation contexts.

e Formal systems (to capture arbitrary relations over
terms).

redex2coq

Redex

@ Tools for testing/prototyping:
e Random-testing of properties.

o Stepper

e Facilities to implement test suites

redex2coq

Redex

@ Already used in several formalization efforts for real
programming languages:
e JavaScript

e Python

o Scheme

o Lua

redex2coq

Redex

Example: A-calculus with call-by-value normal-order reduction.

(define-language lambda
[e ::=x (e e) v]

[v ::= (A x e)]

variable-not-otherwise-mentioned]

=
]

[E ::= hole (E e) (v E)])

Figure: Grammar of A-terms and evaluation contexts.

10

redex2coq

Redex

Example: A-calculus with call-by-value normal-order reduction.

(define-metafunction lambda
fv e -> (x ...)

[ifv x) (x)]

[(fv (e_1 e_2)) (x_1 ... x_2 ...)
(where (x_1 ...) (fv e_1))

(where (x_2 ...) (fv e_2))]

[(fv (A x_1e)) (x2 ... x3...)
(where (x_2 ... x_1 x_3 ...) (fv e))]

;{x not in (fv e)}
[(fv (A x e)) (fv e)l)

Figure: Free occurrences of variables in A-terms.

11

redex2coq

Redex

Example: A-calculus with call-by-value normal-order reduction.

(define reduction
(reduction-relation
lambda
#:domain e

[--> (in-hole E ((A x e) v))

(in-hole E (substitute e x v))
beta_contraction]))

Figure: B-contraction and its compatible closure.

12

redex2coq

Redex

Example: A-calculus with call-by-value normal-order reduction.

(define-judgment-form lambda
#:mode (normal-form I)
#:contract (normal-form e)

(normal-form x)]

[(normal-form e)

(normal-form (x e))]

[(normal-form e_1) (normal-form e_2) (normal-form e_3)

(normal-form ((e_1 e_2) e_3))]

[(normal-form e)

(normal-form (A x e))]
)

Figure: Formal system capturing the notion of “normal form”. 13

redex2coq

Redex

Example: A-calculus with call-by-value normal-order reduction.

> (judgment-holds (normal-form y))
#t
> (judgment-holds (normal-form (y z)))

#t
> (judgment-holds (normal-form ((A x x) z)))

#f

Figure: Using a decision procedure extracted from the previous
formal system.

14

redex2coq

Redex

Example: A-calculus with call-by-value normal-order reduction.

> (generate-term lambda #:satisfying (normal-form e) 1)
"(normal-form (s ((M Z) T)))

> (generate-term lambda #:satisfying (normal-form e) 1)
"(normal-form r)

> (generate-term lambda #:satisfying (normal-form e) 1)
'(normal-form q)

> (generate-term lambda #:satisfying (normal-form e) 1)
"(normal-form ((((q P) T) ((K h) uE)) ((z A) PR)))

> (generate-term lambda #:satisfying (normal-form e) 1)
"(normal-form ((((F x) W) ((mH S) q)) ((E v) 1}))

Figure: Using a generator extracted from the previous formal
system.

15

redex2coq

Redex

What cannot be done within Redex:

@ Formal verification.

@ Get static guarantees of correctness (only syntax checks).

redex2coq

16

Redex

Problem:

@ No facilities to export to proof assistants a (reasonable)
complex fragment of a model.*

4Redex Plus being another effort in this direction, with some limitations imposed by its shallow embedding
approach to pattern representation. 17

redex2coq

Proposal

Proposal

P
A Semantics for Context-Sen:

Casey Klein', Jay McCarthy?, Steven Jaconette!, and Robert Bruce Findler!

! Northwestern University
2 Brigham Young University

Abstract. This paper explores the semantics of the meta-notation used in the
style of operational semantics introduced by Felleisen and Hieb. Specifically, it
defines a formal system that gives precise meanings to the notions of contexts,
and plugging left implicit in most expositions.
This semantics is not naturally algorithmic, so the paper also provides an algo-
rithm and proves a correspondence with the declarative definition.
The motivation for this investigation is PLT Redex, a domain-specific program-
ming language designed to support Felleisen-Hieb-style semantics. This style of
semantics is the de-facto standard in operational semantics and, as such, is widely
used. Accordingly, our goal is that Redex programs should, as much as possible,
look and behave like those semantics. Since Redex’s first public release more than
seven years ago, its precise interpretation of contexts has changed several times,
as we repeatedly encountered reduction systems that did not behave according to
their authors” intent. This paper describes the culimation of that experience. To
the best of our knowledge, the semantics given here accommodates even the most
complex uses of contexts available.

e Reduction Semantics

Absent Redex features

Decision procedures

Deep embedding

- 19

redex2coq

redex2coq

RedexK?

5A Semantics for Context-Sensitive Reduction Semantics, Klein et. al

redex2coq

RedexK

@ Subset of Redex's language for patterns and terms.
e Terms (t) are captured through grammars (g).

e Productions of the grammars are specified through
patterns (p).

o Patterns can be: non-terminals of the grammar (n),
literals, sequences of patterns, named patterns.

o It is possible to specify context-dependent rules.

22

redex2coq

RedexK

@ Specification of matching of a term t against some
pattern p...
e ...where p could contain mentions to non-terminals from
a grammar g:
ght:pl|b

redex2coq

23

RedexK

@ Specification of matching of a term t against some
pattern p...
e ...where p could contain mentions to non-terminals from
a grammar g:
gt t:p| ® <« bindings produced during matching of
named patterns

23

redex2coq

RedexK

@ Matching as an algorithm.

@ Proofs of soundness and completeness...

e ... of algorithmic matching with respect to its
specification.

redex2coq

24

RedexK

Challenges for the
mechanization in Coq.

Challenges for the mechanization in Coq.

© Matching algorithm is not in a primitive recursive fashion.

© Reproduce soundness and completeness proofs.

redex2coq

26

Challenges for the mechanization in Coq.

© Matching algorithm is not in a primitive recursive fashion.

e During matching occurs, either:
o Consumption of the term.

o Consumption of the pattern.

@ Productions of the grammar are tested, which might
involve matching against a new pattern:

{-;(nyp),..}Ft:n]..
(_>
{-i,(n,p), ..} Ht:p]..

27

redex2coq

Challenges for the mechanization in Coq.

© Matching algorithm is not in a primitive recursive fashion.

o Observation: during matching we can discard already
used productions from the grammar...

o ...if the grammar is non-left recursive.

@ No problem: Redex only supports non-left recursive
grammars.

28

redex2coq

Challenges for the mechanization in Coq.

@ Matching algorithm is not in a primitive recursive fashion.

e The previous allows us to generalize matching;:
o Original matching: gb-t:p|b

o Generalized matching: gt : pg | b

redex2coq

29

Challenges for the mechanization in Coq.

© Matching algorithm is not in a primitive recursive fashion.

e The previous allows us to generalize matching:

{..., (n, p), } Ft: ng..(np),..} ‘ b
(%

{(np)y oy tpry | b

29

redex2coq

Challenges for the mechanization in Coq.

@ Matching algorithm is not in a primitive recursive fashion.

o Well-founded relation over the tuples from
gt t:pg | ... built by:
o Preserving premise/judgement order.

o Well-founded relation over the set of terms T (term
consumption):

<rCT

o Well-founded relation over the pairs P x G (pattern
and/or production consumption):

<pxcC P x G

redex2coq

30

Challenges for the mechanization in Coq.

© Matching algorithm is not in a primitive recursive fashion.

o Well-founded relation over the tuples from
gt t:pg | .., built by:
o Lexicographic order on tuples from <1 X <pxg¢:
G
<€ riem CTx (PXG)

is well-founded.

30

redex2coq

Challenges for the mechanization in Coq.

@ Matching algorithm is not in a primitive recursive fashion.

e We can capture a matching algorithm as a primitive
recursion that respects the previous well-founded order.
@ Algorithm + its termination proof.

31

redex2coq

Challenges for the mechanization in Coq.

© Reproduce soundness and completeness proofs.

e Soundness and completeness of algorithmic generalized
matching with respect to its specification.

e Soundness of our manipulation of grammars:
ghtipgy |b <= gk t:pgnsp|b

e Soundness and completeness of our specification of
generalized matching, with respect to the original
specification of matching.

32

redex2coq

Ongoing development.

Ongoing development.

© Redex patterns absent in RedexK.

© No previous work on decision procedures or specific
tactics to prove properties over languages expressed
through Redex patterns.

© Transpiler.

redex2coq

34

Ongoing development.

© Redex patterns absent in RedexK.
o We extended the language of patterns:

@ Possible empty list of terms (useful for the future
inclusion of the Kleene-star of patterns).

o We modified spec./matching/proofs.

@ Tested our semantics against Redex implementation.

redex2coq

35

Ongoi
ngoing development

a O O hees .q'\thubcem‘ JcoromitiE
cs\\/\s\ted @Geumq sarted
fixbud in matchev

Tnanks to

maste’
V8.0

@ i

Showing

dlev iy
2 changed files with 22 additions and 1 deletion
L

redex»\\b/ redex! private

mam‘nem«

redex/tesw redex
e.rkt

ylanguad

frests

redex«\l

(def ine (pud

Una\(e»c
{not

L
(an

redex2coq

b/redex/p

1d-c0™

ompiled”

proc
tr\u\\? nane
uil? names »

wane oF
o {eaud

ri\late/mat

pited-pa®
pattern

s)

7 names, {r

cern PYO

cner -¥KE

c

¥ <
wove'dup

names \ang'(l»equa\”\

ated
1icates names)‘)

Ongoing development.

© No previous work on decision procedures or specific
tactics to prove properties over languages expressed
through Redex patterns.
e In progress: Finite subset types of terms and patterns
bounded in size (e.g., decidability of properties
quantified over terms and/or patterns).

redex2coq

36

Ongoing development.

© No previous work on decision procedures or specific
tactics to prove properties over languages expressed
through Redex patterns.
e In progress: Poset of patterns (ordered by language
inclusion) — lattice over which we can perform
equational reasoning about language intersection.

37

redex2coq

Ongoing development.

© Transpiler (in progress).
e It is able to translate every Redex feature covered in our
first iteration.

e Builds proofs for standard decidability properties
(decidability of definitional equality of atomic elements
of patterns and terms).

38

redex2coq

Future work

Future work

@ Add missing Redex features (more patterns, formal
systems, meta—functions).

@ Further develop our theory about decidable portions of
reduction semantics Redex style.

@ Improve efficiency of extracted interpreters: refocusing!

Ob0)

https://github.com/Mallku2/redex2coq

redex2coq

https://github.com/Mallku2/redex2coq

Thanks!, Questions?

