
redex2coq: towards a theory of

decidability of Redex’s reduction semantics

Mallku Soldevila1, Rodrigo Ribeiro2, Beta

Ziliani3

September, 10 - 15th International Conference on
Interactive Theorem Proving (ITP 2024) - Tbilisi,

Georgia

1FAMAF, UNC (LIIS Group) & CONICET (Argentina)
2DECOM, UFOP (Brazil)
3FAMAF, UNC (LIIS Group) & Manas.Tech (Argentina)

2

Spoiler...

redex2coq

3

Spoiler...

+

Deep embedding

redex2coq

Absent Redex features

Decision procedures

4

Summary

redex2coq

5

Summary

Redex.
Problem.

Proposal.

redex2coq : Redex → Coq

RedexK.

Challenges for the mechanization in Coq.

Ongoing development.

Future work.

Conclusion.
redex2coq

6

Redex

redex2coq

7

Redex

DSL built on top of Racket.

Fast mechanization of:

Reduction semantics with evaluation contexts.

Formal systems (to capture arbitrary relations over
terms).

redex2coq

8

Redex

Tools for testing/prototyping:

Random-testing of properties.

Stepper

Facilities to implement test suites

redex2coq

9

Redex

Already used in several formalization efforts for real
programming languages:

JavaScript

Python

Scheme

Lua

redex2coq

10

Redex

Example: λ-calculus with call-by-value normal-order reduction.

Figure: Grammar of λ-terms and evaluation contexts.

redex2coq

11

Redex

Example: λ-calculus with call-by-value normal-order reduction.

Figure: Free occurrences of variables in λ-terms.

redex2coq

12

Redex

Example: λ-calculus with call-by-value normal-order reduction.

Figure: β-contraction and its compatible closure.

redex2coq

13

Redex

Example: λ-calculus with call-by-value normal-order reduction.

Figure: Formal system capturing the notion of “normal form”.

redex2coq

14

Redex

Example: λ-calculus with call-by-value normal-order reduction.

Figure: Using a decision procedure extracted from the previous
formal system.

redex2coq

15

Redex

Example: λ-calculus with call-by-value normal-order reduction.

Figure: Using a generator extracted from the previous formal
system.

redex2coq

16

Redex

What cannot be done within Redex:

Formal verification.

Get static guarantees of correctness (only syntax checks).

redex2coq

17

Redex

Problem:

No facilities to export to proof assistants a (reasonable)
complex fragment of a model.4

4
Redex Plus being another effort in this direction, with some limitations imposed by its shallow embedding

approach to pattern representation.

redex2coq

18

Proposal

redex2coq

19

Proposal

+

Deep embedding

redex2coq

Absent Redex features

Decision procedures

20

redex2coq

redex2coq

21

RedexK5

5A Semantics for Context-Sensitive Reduction Semantics, Klein et. al
redex2coq

22

RedexK

Subset of Redex’s language for patterns and terms.

Terms (t) are captured through grammars (g).

Productions of the grammars are specified through
patterns (p).

Patterns can be: non-terminals of the grammar (n),
literals, sequences of patterns, named patterns.

It is possible to specify context-dependent rules.

redex2coq

23

RedexK

Specification of matching of a term t against some
pattern p...

...where p could contain mentions to non-terminals from
a grammar g :

g ⊢ t : p | b

redex2coq

23

RedexK

Specification of matching of a term t against some
pattern p...

...where p could contain mentions to non-terminals from
a grammar g :

g ⊢ t : p | b○ ← bindings produced during matching of
named patterns

redex2coq

24

RedexK

Matching as an algorithm.

Proofs of soundness and completeness...

... of algorithmic matching with respect to its
specification.

redex2coq

25

RedexK

Challenges for the
mechanization in Coq.

redex2coq

26

Challenges for the mechanization in Coq.

1 Matching algorithm is not in a primitive recursive fashion.

2 Reproduce soundness and completeness proofs.

redex2coq

27

Challenges for the mechanization in Coq.

1 Matching algorithm is not in a primitive recursive fashion.

During matching occurs, either:

Consumption of the term.

Consumption of the pattern.

Productions of the grammar are tested, which might
involve matching against a new pattern:

{..., (n, p), ...} ⊢ t : n | ...
↪→

{..., (n, p), ...} ⊢ t : p | ...

redex2coq

28

Challenges for the mechanization in Coq.

1 Matching algorithm is not in a primitive recursive fashion.

Observation: during matching we can discard already
used productions from the grammar...

...if the grammar is non-left recursive.

No problem: Redex only supports non-left recursive
grammars.

redex2coq

29

Challenges for the mechanization in Coq.

1 Matching algorithm is not in a primitive recursive fashion.

The previous allows us to generalize matching:

Original matching: g ⊢ t : p | b

Generalized matching: g ⊢ t : pg ′ | b

redex2coq

29

Challenges for the mechanization in Coq.

1 Matching algorithm is not in a primitive recursive fashion.

The previous allows us to generalize matching:

{..., (n, p), ...} ⊢ t : n{...,(n,p),...} | b
↪→

{..., (n, p), ...} ⊢ t : p{...} | b

redex2coq

30

Challenges for the mechanization in Coq.

1 Matching algorithm is not in a primitive recursive fashion.

Well-founded relation over the tuples from
g ⊢ t : pg ′ | ..., built by:

Preserving premise/judgement order.

Well-founded relation over the set of terms T (term
consumption):

<T ⊂ T

Well-founded relation over the pairs P× G (pattern
and/or production consumption):

<P×G ⊂ P × G

redex2coq

30

Challenges for the mechanization in Coq.

1 Matching algorithm is not in a primitive recursive fashion.

Well-founded relation over the tuples from
g ⊢ t : pg ′ | ..., built by:

Lexicographic order on tuples from <T × <P×G:

<G
(<T×<P×G)

⊂ T× (P× G)

is well-founded.

redex2coq

31

Challenges for the mechanization in Coq.

1 Matching algorithm is not in a primitive recursive fashion.

We can capture a matching algorithm as a primitive
recursion that respects the previous well-founded order.

Algorithm + its termination proof.

redex2coq

32

Challenges for the mechanization in Coq.

2 Reproduce soundness and completeness proofs.

Soundness and completeness of algorithmic generalized
matching with respect to its specification.

Soundness of our manipulation of grammars:
g ⊢ t : pg ′ | b ⇐⇒ g ⊢ t : pg ′\n→p | b

Soundness and completeness of our specification of
generalized matching, with respect to the original
specification of matching.

redex2coq

33

Ongoing development.

redex2coq

34

Ongoing development.

1 Redex patterns absent in RedexK.

2 No previous work on decision procedures or specific
tactics to prove properties over languages expressed
through Redex patterns.

3 Transpiler.

redex2coq

35

Ongoing development.

2 Redex patterns absent in RedexK.
We extended the language of patterns:

Possible empty list of terms (useful for the future
inclusion of the Kleene-star of patterns).

We modified spec./matching/proofs.

Tested our semantics against Redex implementation.

redex2coq

35

Ongoing development.

2 Redex patterns absent in RedexK.
We extended the language of patterns:

Possible empty list of terms (useful for the future
inclusion of the Kleene-star of patterns).

We modified spec./matching/proofs.

Tested our semantics against Redex implementation.

redex2coq

36

Ongoing development.

2 No previous work on decision procedures or specific
tactics to prove properties over languages expressed
through Redex patterns.

In progress: Finite subset types of terms and patterns
bounded in size (e.g., decidability of properties
quantified over terms and/or patterns).

redex2coq

37

Ongoing development.

2 No previous work on decision procedures or specific
tactics to prove properties over languages expressed
through Redex patterns.

In progress: Poset of patterns (ordered by language
inclusion) → lattice over which we can perform
equational reasoning about language intersection.

redex2coq

38

Ongoing development.

3 Transpiler (in progress).

It is able to translate every Redex feature covered in our
first iteration.

Builds proofs for standard decidability properties
(decidability of definitional equality of atomic elements
of patterns and terms).

redex2coq

39

Future work

redex2coq

40

Future work

Add missing Redex features (more patterns, formal
systems, meta-functions).

Further develop our theory about decidable portions of
reduction semantics Redex style.

Improve efficiency of extracted interpreters: refocusing!

redex2coq

https://github.com/Mallku2/redex2coq

https://github.com/Mallku2/redex2coq

41

Thanks!, Questions?

redex2coq

