
Understanding Lua’s Garbage Collection
Towards a Formalized Static Analyzer

22nd International Symposium on Principles and Practice of Declarative
Programming

Mallku Soldevila1, Beta Ziliani1 and Daniel Fridlender2

1FAMAF/UNC and CONICET, 2FAMAF/UNC

Summary

About Lua

Garbage collection in Lua:

I A first look into garbage collection

I Approach and contributions of the present work

I Formalization challenges of GC in Lua

I Formal semantics of GC

Mechanization

Application: LuaSafe

Future work

2 / 32

About Lua

3 / 32

About Lua

Extension and data-entry language.

Features:

I Procedural programming with data-description facilities (only one structured
data-type: tables)

I Fast development: dynamic typing, automatic memory management.

I Small implementation (∼216KB; for reduced embedding cost).

I meta-tables: meta-programming mechanism to extend the semantics of
programming constructions.

4 / 32

About Lua

Projects using Lua:

I Heavily used in the video game industry: mobile games, “AAA” games and
game engines.

I Other scriptable software: Adobe Photoshop Lightroom, LuaTex, VLC media
player, Wireshark,...

I www.lua.org/uses.html.

5 / 32

www.lua.org/uses.html

A first look into garbage collection

6 / 32

A first look into garbage collection

Lua 5.2 implements 2 garbage collectors based on reachability:

I mark-and-sweep

I generational

Includes 2 interfaces with the garbage collector:

I finalizers

F Custom routines for the release of external resources used by the program.

I weak tables

F A table whose keys and/or values are referred by weak references.

7 / 32

A first look into garbage collection

Lua 5.2 implements 2 garbage collectors based on reachability:

I mark-and-sweep

I generational

Includes 2 interfaces with the garbage collector:

I finalizers

F Custom routines for the release of external resources used by the program.

I weak tables

F A table whose keys and/or values are referred by weak references.

7 / 32

A first look into garbage collection

Lua 5.2 implements 2 garbage collectors based on reachability:

I mark-and-sweep

I generational

Includes 2 interfaces with the garbage collector:

I finalizers

F Custom routines for the release of external resources used by the program.

I weak tables

F A table whose keys and/or values are referred by weak references.

7 / 32

A first look into garbage collection

1 creates a cache of closures
2 local cache1 = {[1] = function() return 1 end,
3 [2] = function() return 2 end,
4 [3] = function() return 3 end}
5

6 references to closures in cache1
7 local obj = {method = cache1[1], attr = {}}
8 local cache2 = {[1] = cache1[2]}
9

10 values are now ref. by weak references (weak tables)
11 setmetatable(cache1, { mode = ”v”})
12 setmetatable(cache2, { mode = ”v”})
13

14 weak refs. are not taken into account by the garbage collector
15 cache1 [1]() ← which field is guaranteed to be accessible?
16 cache1 [2]()
17 cache1 [3]()

8 / 32

Weak tables

A first look into garbage collection

1 local a, b, c = {}, {}, {} ← 3 empty tables
2 c. gc = function (t) ← field in c with key “ gc”
3 d = t and a procedure as value: the finalizer
4 print (’bye ’, t)
5 end
6 setmetatable(a, c) a and b are marked for finalization
7 setmetatable(b, c) finalizer: c. gc
8

9 a = nil a and b not reachable → they can be finalized
10 b = nil
11

12 collectgarbage () garbage collector invokes finalizers
13

14 print (d) a or b permanently resurrected, preventing GC
15 (depends on finalization order)

9 / 32

Finalizers

Approach and contributions of the present work

10 / 32

Approach and contributions of the present work

A mathematical model of Lua’s GC.

A theoretical framework, to express and prove properties of our model.

A mechanization in PLT Redex.

LuaSafe, to help uncover non-deterministic behavior introduced by weak tables.

11 / 32

Approach and contributions of the present work

A mathematical model of Lua’s GC.

A theoretical framework, to express and prove properties of our model.

A mechanization in PLT Redex.

LuaSafe, to help uncover non-deterministic behavior introduced by weak tables.

11 / 32

Approach and contributions of the present work

A mathematical model of Lua’s GC.

A theoretical framework, to express and prove properties of our model.

A mechanization in PLT Redex.

LuaSafe, to help uncover non-deterministic behavior introduced by weak tables.

11 / 32

Approach and contributions of the present work

A mathematical model of Lua’s GC.

A theoretical framework, to express and prove properties of our model.

A mechanization in PLT Redex.

LuaSafe, to help uncover non-deterministic behavior introduced by weak tables.

11 / 32

Formalization challenges of GC in Lua

12 / 32

Formalization challenges of GC in Lua

Particularities/challenges in Lua’s finalizers semantics:

Inverse chronological order of finalization.

Avoids indestructible objects.

Better support for common data-structures implemented with weak tables (e.g.,
property tables).

13 / 32

Formalization challenges of GC in Lua

Particularities/challenges in Lua’s finalizers semantics:

Inverse chronological order of finalization.

Avoids indestructible objects.

Better support for common data-structures implemented with weak tables (e.g.,
property tables).

13 / 32

Formalization challenges of GC in Lua

Particularities/challenges in Lua’s finalizers semantics:

Inverse chronological order of finalization.

Avoids indestructible objects.

Better support for common data-structures implemented with weak tables (e.g.,
property tables).

13 / 32

Formalization challenges of GC in Lua

Particularities/challenges in Lua’s weak tables semantics:

Ephemerons (similar to key/values weak references present in the GHC).

I See Eliminating Cycles in Weak Tables, Alexandra Barros and Roberto
Ierusalimschy. 2008.

Better support for common data-structures implemented with weak tables (e.g.,
property tables).

14 / 32

Formalization challenges of GC in Lua

Particularities/challenges in Lua’s weak tables semantics:

Ephemerons (similar to key/values weak references present in the GHC).

I See Eliminating Cycles in Weak Tables, Alexandra Barros and Roberto
Ierusalimschy. 2008.

Better support for common data-structures implemented with weak tables (e.g.,
property tables).

14 / 32

Formalization challenges of GC in Lua

Interaction between interfaces

Finalization checks for reachability taking into account weak tables semantics.

Weak tables are cleaned taking into account finalization order.

15 / 32

Formalization challenges of GC in Lua

Interaction between interfaces

Finalization checks for reachability taking into account weak tables semantics.

Weak tables are cleaned taking into account finalization order.

15 / 32

Formal semantics of GC

16 / 32

Formal semantics of GC

Extends a previous formalized dynamic semantics for Lua 5.2:

I Small-steps operational semantics, with concepts from reduction semantics with
evaluation contexts.

Specification of the behavior of a correct garbage collector for Lua (abstracted into a
meta-function gcfin weak):

I Suitable notion of reachability for Lua.

I Specifies fields of weak tables than can be removed.

I Identifies the next table to be finalized.

I Specifies interaction between both interfaces.

17 / 32

Formal semantics of GC

Extends a previous formalized dynamic semantics for Lua 5.2:

I Small-steps operational semantics, with concepts from reduction semantics with
evaluation contexts.

Specification of the behavior of a correct garbage collector for Lua (abstracted into a
meta-function gcfin weak):

I Suitable notion of reachability for Lua.

I Specifies fields of weak tables than can be removed.

I Identifies the next table to be finalized.

I Specifies interaction between both interfaces.

17 / 32

Formal semantics of GC

Extends a previous formalized dynamic semantics for Lua 5.2:

I Small-steps operational semantics, with concepts from reduction semantics with
evaluation contexts.

Specification of the behavior of a correct garbage collector for Lua (abstracted into a
meta-function gcfin weak):

I Suitable notion of reachability for Lua.

I Specifies fields of weak tables than can be removed.

I Identifies the next table to be finalized.

I Specifies interaction between both interfaces.

17 / 32

Formal semantics of GC

Extends a previous formalized dynamic semantics for Lua 5.2:

I Small-steps operational semantics, with concepts from reduction semantics with
evaluation contexts.

Specification of the behavior of a correct garbage collector for Lua (abstracted into a
meta-function gcfin weak):

I Suitable notion of reachability for Lua.

I Specifies fields of weak tables than can be removed.

I Identifies the next table to be finalized.

I Specifies interaction between both interfaces.

17 / 32

Formal semantics of GC

Extends a previous formalized dynamic semantics for Lua 5.2:

I Small-steps operational semantics, with concepts from reduction semantics with
evaluation contexts.

Specification of the behavior of a correct garbage collector for Lua (abstracted into a
meta-function gcfin weak):

I Suitable notion of reachability for Lua.

I Specifies fields of weak tables than can be removed.

I Identifies the next table to be finalized.

I Specifies interaction between both interfaces.

17 / 32

Formal semantics of GC

Non-deterministic execution steps:

(σ′, f , t) = gcfin weak(σ,E[[s]])

σ : E[[s]]
GC+W+F7→ σ′ : E[[f (t); s]]

18 / 32

Formal semantics of GC

Framework for formal reasoning about GC and sanity-check

Defines observations over programs (non-termination or returned values), garbage,
etc.

GC-correctness: for a given program p, the observations are preserved by GC-steps
without interfaces to the garbage collector:

obs(p, 7→) = obs(p, 7→ ∪ GC7→)

We are setting a framework for future discussion on static analysis of Lua programs
and GC.

19 / 32

Formal semantics of GC

Framework for formal reasoning about GC and sanity-check

Defines observations over programs (non-termination or returned values), garbage,
etc.

GC-correctness: for a given program p, the observations are preserved by GC-steps
without interfaces to the garbage collector:

obs(p, 7→) = obs(p, 7→ ∪ GC7→)

We are setting a framework for future discussion on static analysis of Lua programs
and GC.

19 / 32

Formal semantics of GC

Framework for formal reasoning about GC and sanity-check

Defines observations over programs (non-termination or returned values), garbage,
etc.

GC-correctness: for a given program p, the observations are preserved by GC-steps
without interfaces to the garbage collector:

obs(p, 7→) = obs(p, 7→ ∪ GC7→)

We are setting a framework for future discussion on static analysis of Lua programs
and GC.

19 / 32

Mechanization

20 / 32

Mechanization.

Implemented using Redex.

Tested against Lua 5.2’s test suite: 1444 LOCS (from 6902 LOCS).

I gc.lua: 125 LOCs from 445 LOCS.

Why?

I Features not covered by our formalization (mostly, library services) and
implementation details (generation of bytecode, performance, etc).

I gc.lua: features not covered by our model (mainly parameters of the
collectgarbage service) and manipulation of large data-structures (performance).

Every line of code of the test suite that falls within the scope of this work
successfully passes the tests, except performance tests.

Mechanization available at github.com/Mallku2/lua-gc-redex-model.

21 / 32

github.com/Mallku2/lua-gc-redex-model

Mechanization.

Implemented using Redex.

Tested against Lua 5.2’s test suite: 1444 LOCS (from 6902 LOCS).

I gc.lua: 125 LOCs from 445 LOCS.

Why?

I Features not covered by our formalization (mostly, library services) and
implementation details (generation of bytecode, performance, etc).

I gc.lua: features not covered by our model (mainly parameters of the
collectgarbage service) and manipulation of large data-structures (performance).

Every line of code of the test suite that falls within the scope of this work
successfully passes the tests, except performance tests.

Mechanization available at github.com/Mallku2/lua-gc-redex-model.

21 / 32

github.com/Mallku2/lua-gc-redex-model

Mechanization.

Implemented using Redex.

Tested against Lua 5.2’s test suite: 1444 LOCS (from 6902 LOCS).

I gc.lua: 125 LOCs from 445 LOCS.

Why?

I Features not covered by our formalization (mostly, library services) and
implementation details (generation of bytecode, performance, etc).

I gc.lua: features not covered by our model (mainly parameters of the
collectgarbage service) and manipulation of large data-structures (performance).

Every line of code of the test suite that falls within the scope of this work
successfully passes the tests, except performance tests.

Mechanization available at github.com/Mallku2/lua-gc-redex-model.

21 / 32

github.com/Mallku2/lua-gc-redex-model

Mechanization.

Implemented using Redex.

Tested against Lua 5.2’s test suite: 1444 LOCS (from 6902 LOCS).

I gc.lua: 125 LOCs from 445 LOCS.

Why?

I Features not covered by our formalization (mostly, library services) and
implementation details (generation of bytecode, performance, etc).

I gc.lua: features not covered by our model (mainly parameters of the
collectgarbage service) and manipulation of large data-structures (performance).

Every line of code of the test suite that falls within the scope of this work
successfully passes the tests, except performance tests.

Mechanization available at github.com/Mallku2/lua-gc-redex-model.

21 / 32

github.com/Mallku2/lua-gc-redex-model

Mechanization.

Implemented using Redex.

Tested against Lua 5.2’s test suite: 1444 LOCS (from 6902 LOCS).

I gc.lua: 125 LOCs from 445 LOCS.

Why?

I Features not covered by our formalization (mostly, library services) and
implementation details (generation of bytecode, performance, etc).

I gc.lua: features not covered by our model (mainly parameters of the
collectgarbage service) and manipulation of large data-structures (performance).

Every line of code of the test suite that falls within the scope of this work
successfully passes the tests, except performance tests.

Mechanization available at github.com/Mallku2/lua-gc-redex-model.

21 / 32

github.com/Mallku2/lua-gc-redex-model

Mechanization.

Implemented using Redex.

Tested against Lua 5.2’s test suite: 1444 LOCS (from 6902 LOCS).

I gc.lua: 125 LOCs from 445 LOCS.

Why?

I Features not covered by our formalization (mostly, library services) and
implementation details (generation of bytecode, performance, etc).

I gc.lua: features not covered by our model (mainly parameters of the
collectgarbage service) and manipulation of large data-structures (performance).

Every line of code of the test suite that falls within the scope of this work
successfully passes the tests, except performance tests.

Mechanization available at github.com/Mallku2/lua-gc-redex-model.

21 / 32

github.com/Mallku2/lua-gc-redex-model

Application: LuaSafe

22 / 32

Application: LuaSafe

Problem: ∃p, obs(p, 7→) 6= obs(p, 7→ ∪ GC+W+F7→)

Let Psafe = {p | obs(p, 7→) = obs(p, 7→ ∪ GC+W+F7→)}

For a given program p that uses weak tables, recognizing p ∈ Psafe requires:

I Type information.

I Weakness of each table.

I A syntactic approximation of the reachability tree.

We will try a best-effort approach to recognize membership to Psafe : no changes to
user code needed.

23 / 32

Application: LuaSafe

Problem: ∃p, obs(p, 7→) 6= obs(p, 7→ ∪ GC+W+F7→)

Let Psafe = {p | obs(p, 7→) = obs(p, 7→ ∪ GC+W+F7→)}

For a given program p that uses weak tables, recognizing p ∈ Psafe requires:

I Type information.

I Weakness of each table.

I A syntactic approximation of the reachability tree.

We will try a best-effort approach to recognize membership to Psafe : no changes to
user code needed.

23 / 32

Application: LuaSafe

Problem: ∃p, obs(p, 7→) 6= obs(p, 7→ ∪ GC+W+F7→)

Let Psafe = {p | obs(p, 7→) = obs(p, 7→ ∪ GC+W+F7→)}

For a given program p that uses weak tables, recognizing p ∈ Psafe requires:

I Type information.

I Weakness of each table.

I A syntactic approximation of the reachability tree.

We will try a best-effort approach to recognize membership to Psafe : no changes to
user code needed.

23 / 32

Application: LuaSafe

Problem: ∃p, obs(p, 7→) 6= obs(p, 7→ ∪ GC+W+F7→)

Let Psafe = {p | obs(p, 7→) = obs(p, 7→ ∪ GC+W+F7→)}

For a given program p that uses weak tables, recognizing p ∈ Psafe requires:

I Type information.

I Weakness of each table.

I A syntactic approximation of the reachability tree.

We will try a best-effort approach to recognize membership to Psafe : no changes to
user code needed.

23 / 32

Application: LuaSafe

Problem: ∃p, obs(p, 7→) 6= obs(p, 7→ ∪ GC+W+F7→)

Let Psafe = {p | obs(p, 7→) = obs(p, 7→ ∪ GC+W+F7→)}

For a given program p that uses weak tables, recognizing p ∈ Psafe requires:

I Type information.

I Weakness of each table.

I A syntactic approximation of the reachability tree.

We will try a best-effort approach to recognize membership to Psafe : no changes to
user code needed.

23 / 32

Application: LuaSafe

Problem: ∃p, obs(p, 7→) 6= obs(p, 7→ ∪ GC+W+F7→)

Let Psafe = {p | obs(p, 7→) = obs(p, 7→ ∪ GC+W+F7→)}

For a given program p that uses weak tables, recognizing p ∈ Psafe requires:

I Type information.

I Weakness of each table.

I A syntactic approximation of the reachability tree.

We will try a best-effort approach to recognize membership to Psafe : no changes to
user code needed.

23 / 32

Application: LuaSafe

With our type system, we need to:

Recognize field accessed (and types of key and value), from a given table.

Recognize weakness of the table being accessed.

Being able to reason about types of several (possible recursive) data structures
commonly implemented using Lua tables, and related idioms: objects, trees, lists,
etc.

24 / 32

Type system

Application: LuaSafe

With our type system, we need to:

Recognize field accessed (and types of key and value), from a given table.

Recognize weakness of the table being accessed.

Being able to reason about types of several (possible recursive) data structures
commonly implemented using Lua tables, and related idioms: objects, trees, lists,
etc.

24 / 32

Type system

Application: LuaSafe

With our type system, we need to:

Recognize field accessed (and types of key and value), from a given table.

Recognize weakness of the table being accessed.

Being able to reason about types of several (possible recursive) data structures
commonly implemented using Lua tables, and related idioms: objects, trees, lists,
etc.

24 / 32

Type system

Application: LuaSafe

Primitive types (prmt): nil, num, bool, str

Singleton types (st): 〈v st : prmt〉
I v st ∈ {nil} ∪ string ∪ boolean ∪ number

Table type: { [st] : t ... } wkness

I wkness ∈ {strong,wk,wv,wkv}

I With singleton types, determining weakness of a table reduces to a type
checking problem.

Recursive types: µ y . t

I Just for table types.

25 / 32

Type system

Application: LuaSafe

Primitive types (prmt): nil, num, bool, str

Singleton types (st): 〈v st : prmt〉
I v st ∈ {nil} ∪ string ∪ boolean ∪ number

Table type: { [st] : t ... } wkness

I wkness ∈ {strong,wk,wv,wkv}

I With singleton types, determining weakness of a table reduces to a type
checking problem.

Recursive types: µ y . t

I Just for table types.

25 / 32

Type system

Application: LuaSafe

Primitive types (prmt): nil, num, bool, str

Singleton types (st): 〈v st : prmt〉
I v st ∈ {nil} ∪ string ∪ boolean ∪ number

Table type: { [st] : t ... } wkness

I wkness ∈ {strong,wk,wv,wkv}

I With singleton types, determining weakness of a table reduces to a type
checking problem.

Recursive types: µ y . t

I Just for table types.

25 / 32

Type system

Application: LuaSafe

Primitive types (prmt): nil, num, bool, str

Singleton types (st): 〈v st : prmt〉
I v st ∈ {nil} ∪ string ∪ boolean ∪ number

Table type: { [st] : t ... } wkness

I wkness ∈ {strong,wk,wv,wkv}

I With singleton types, determining weakness of a table reduces to a type
checking problem.

Recursive types: µ y . t

I Just for table types.

25 / 32

Type system

Application: LuaSafe

Primitive types (prmt): nil, num, bool, str

Singleton types (st): 〈v st : prmt〉
I v st ∈ {nil} ∪ string ∪ boolean ∪ number

Table type: { [st] : t ... } wkness

I wkness ∈ {strong,wk,wv,wkv}

I With singleton types, determining weakness of a table reduces to a type
checking problem.

Recursive types: µ y . t

I Just for table types.

25 / 32

Type system

Application: LuaSafe

Type inference

Based on previous work on type inference for JavaScript1.

Type inferred: solution of a set of constraints about sub-typing relation between
possible types for the expressions of the program.

1Anderson, Christopher and Giannini, Paola and Drossopoulou, Sophia. Towards Type Inference for
JavaScript. In Proceedings of the 19th European Conference on Object-Oriented Programming, ECOOP’05.

26 / 32

Type system

Application: LuaSafe

Type inference

Based on previous work on type inference for JavaScript1.

Type inferred: solution of a set of constraints about sub-typing relation between
possible types for the expressions of the program.

1Anderson, Christopher and Giannini, Paola and Drossopoulou, Sophia. Towards Type Inference for
JavaScript. In Proceedings of the 19th European Conference on Object-Oriented Programming, ECOOP’05.

26 / 32

Type system

Application: LuaSafe

For a given point into a program, we use the set of reaching definitions to determine
reachability.

1 local cache1 = {[1] = function() return 1 end,
2 [2] = function() return 2 end,
3 [3] = function() return 3 end}
4 reach. def: { cache1 = { [1] = ... } }
5 local obj = {method = cache1[1], attr = {}}
6 {cache1 = { [1] = ... },
7 obj = method = cache1[1], ...} }
8 local cache2 = {[1] = cache1[2]}
9 {cache1 = { [1] = ... },

10 obj = {method = cache1[1], ...},
11 cache2 = {[1] = cache1[2]} }
12 setmetatable(cache1, { mode = ”v”})
13 setmetatable(cache2, { mode = ”v”})
14 cache1 [1]() ← same set of reach. defs is preserved up to
15 cache1 [2]() this point
16 cache1 [3]()

27 / 32

Syntactic approximation of the reachability tree.

Application: LuaSafe

For a given point into a program, we use the set of reaching definitions to determine
reachability.

1 local cache1 = {[1] = function() return 1 end,
2 [2] = function() return 2 end,
3 [3] = function() return 3 end}
4 reach. def: { cache1 = { [1] = ... } }
5 local obj = {method = cache1[1], attr = {}}
6 {cache1 = { [1] = ... },
7 obj = method = cache1[1], ...} }
8 local cache2 = {[1] = cache1[2]}
9 {cache1 = { [1] = ... },

10 obj = {method = cache1[1], ...},
11 cache2 = {[1] = cache1[2]} }
12 setmetatable(cache1, { mode = ”v”})
13 setmetatable(cache2, { mode = ”v”})
14 cache1 [1]() ← same set of reach. defs is preserved up to
15 cache1 [2]() this point
16 cache1 [3]()

27 / 32

Syntactic approximation of the reachability tree.

Application: LuaSafe

p type inf. ptyped rch. def cfg rch def type check. p ∈ Psafe?

28 / 32

Application: LuaSafe

1 local cache1 = {[1] = function() return 1 end,
2 [2] = function() return 2 end,
3 [3] = function() return 3 end}
4 local obj = {method = cache1[1], attr = {}}
5 local cache2 = {[1] = cache1[2]}
6 setmetatable(cache1, { mode = ”v”})
7 setmetatable(cache2, { mode = ”v”})
8 cache1 [1]()
9 cache1 [2]()

10 cache1 [3]()

”Access to: ”
’cache1 [2]
”may exhibit nondeterministic behavior”
”Access to: ”
’cache1 [3]
”may exhibit nondeterministic behavior”

Figure: Implementation of a simple cache.

29 / 32

Future work

30 / 32

Future work

Include missing Lua features.

Redex → Coq:

I Machine-checked proofs.
I Extraction of a verified interpreter.

Improve LuaSafe:

I Soundness of static analysis.
I Improve type inference.
I Better syntactic approx. of reach. tree.
I Improve performance.

Recognition of semantic garbage based on type checking.

31 / 32

Thanks!

32 / 32

