Understanding Lua’s Garbage Collection
Towards a Formalized Static Analyzer

22nd International Symposium on Principles and Practice of Declarative
Programming

Mallku Soldevila!, Beta Ziliani* and Daniel Fridlender?

LFAMAF/UNC and CONICET, 2FAMAF/UNC

Summary

@ About Lua

@ Garbage collection in Lua:
> A first look into garbage collection

» Approach and contributions of the present work
» Formalization challenges of GC in Lua
» Formal semantics of GC

@ Mechanization

@ Application: LuaSafe

o Future work

About Lua

About Lua

.~a \angug,
9 Je
< e @

S?rq?/

- the pry,

o Extension and data-entry language.

o Features:
» Procedural programming with data-description facilities (only one structured

data-type: tables)
> Fast development: dynamic typing, automatic memory management.
» Small implementation (~216KB; for reduced embedding cost).

> meta-tables: meta-programming mechanism to extend the semantics of
programming constructions.

About Lua

o Projects using Lua:
» Heavily used in the video game industry: mobile games, “AAA” games and
game engines.

» Other scriptable software: Adobe Photoshop Lightroom, LuaTex, VLC media
player, Wireshark, ...

> www.lua.org/uses.html.

www.lua.org/uses.html

A first look into garbage collection

A first look into garbage collection

o Lua 5.2 implements 2 garbage collectors based on reachability:
> mark-and-sweep

> generational

A first look into garbage collection

o Lua 5.2 implements 2 garbage collectors based on reachability:

> mark-and-sweep

> generational

@ Includes 2 interfaces with the garbage collector:

» finalizers

* Custom routines for the release of external resources used by the program.

A first look into garbage collection

o Lua 5.2 implements 2 garbage collectors based on reachability:

> mark-and-sweep

> generational

@ Includes 2 interfaces with the garbage collector:

» finalizers

* Custom routines for the release of external resources used by the program.

» weak tables
* A table whose keys and/or values are referred by weak references.

A first look into garbage collection

Weak tables

1 creates a cache of closures
2 local cachel = {[1] = function() return 1 end,

3 [2] = function() return 2 end,
4 [3] = function() return 3 end}
5

6 references to closures in cachel

7 local obj = {method = cachel[l], attr = {}}

8 local cache2 = {[1] = cachel[2]}

9

10 values are now ref. by weak references (weak tables)

11 setmetatable(cachel, { __mode = "v"})

12 setmetatable(cache2, { __mode = "v"})

13

14 weak refs. are not taken into account by the garbage collector
15 cachel[1]() < which field is guaranteed to be accessible?
16 cachel[2]()

17 cachel [3]()

8/ 32

A first look into garbage collection

Finalizers

tlocal a, b, c ={}, {}, {} « 3 empty tables

2c._.gc = function (t) < field in c with key “__gc”

3 d=t and a procedure as value: the finalizer
4 print ("bye’, t)

5 end

6 setmetatable(a, c) a and b are marked for finalization
7 setmetatable(b, c) finalizer: c.__gc

8

9a = nil a and b not reachable — they can be finalized
10b = nil

11

12 collectgarbage () garbage collector invokes finalizers

13

14 print (d) a or b permanently resurrected, preventing GC
15 (depends on finalization order)

Approach and contributions of the present work

10 / 32

Approach and contributions of the present work

@ A mathematical model of Lua's GC.

11 /32

Approach and contributions of the present work

@ A mathematical model of Lua's GC.

o A theoretical framework, to express and prove properties of our model.

11 /32

Approach and contributions of the present work

@ A mathematical model of Lua’s GC.
o A theoretical framework, to express and prove properties of our model.

@ A mechanization in PLT Redex.

11 /32

Approach and contributions of the present work

A mathematical model of Lua's GC.

A theoretical framework, to express and prove properties of our model.

A mechanization in PLT Redex.

o LuaSafe, to help uncover non-deterministic behavior introduced by weak tables.

Formalization challenges of GC in Lua

12 / 32

Formalization challenges of GC in Lua

Particularities/challenges in Lua's finalizers semantics:

@ Inverse chronological order of finalization.

13 /32

Formalization challenges of GC in Lua

Particularities/challenges in Lua's finalizers semantics:
@ Inverse chronological order of finalization.

@ Avoids indestructible objects.

13 /32

Formalization challenges of GC in Lua

Particularities/challenges in Lua's finalizers semantics:
@ Inverse chronological order of finalization.
@ Avoids indestructible objects.

o Better support for common data-structures implemented with weak tables (e.g.,
property tables).

13 /32

Formalization challenges of GC in Lua

Particularities/challenges in Lua’s weak tables semantics:

o Ephemerons (similar to key/values weak references present in the GHC).

» See Eliminating Cycles in Weak Tables, Alexandra Barros and Roberto
lerusalimschy. 2008.

Formalization challenges of GC in Lua

Particularities/challenges in Lua’s weak tables semantics:

o Ephemerons (similar to key/values weak references present in the GHC).

» See Eliminating Cycles in Weak Tables, Alexandra Barros and Roberto
lerusalimschy. 2008.

@ Better support for common data-structures implemented with weak tables (e.g.,
property tables).

Formalization challenges of GC in Lua

Interaction between interfaces

@ Finalization checks for reachability taking into account weak tables semantics.

15 / 32

Formalization challenges of GC in Lua

Interaction between interfaces
@ Finalization checks for reachability taking into account weak tables semantics.

o Weak tables are cleaned taking into account finalization order.

15 / 32

Formal semantics of GC

16 / 32

Formal semantics of GC

@ Extends a previous formalized dynamic semantics for Lua 5.2:

> Small-steps operational semantics, with concepts from reduction semantics with
evaluation contexts.

17 / 32

Formal semantics of GC

@ Extends a previous formalized dynamic semantics for Lua 5.2:

» Small-steps operational semantics, with concepts from reduction semantics with
evaluation contexts.

@ Specification of the behavior of a correct garbage collector for Lua (abstracted into a
meta-function gcrin weak):

> Suitable notion of reachability for Lua.

17 / 32

Formal semantics of GC

@ Extends a previous formalized dynamic semantics for Lua 5.2:

» Small-steps operational semantics, with concepts from reduction semantics with
evaluation contexts.

@ Specification of the behavior of a correct garbage collector for Lua (abstracted into a
meta-function gcrin weak):

> Suitable notion of reachability for Lua.

» Specifies fields of weak tables than can be removed.

Formal semantics of GC

@ Extends a previous formalized dynamic semantics for Lua 5.2:

» Small-steps operational semantics, with concepts from reduction semantics with
evaluation contexts.

@ Specification of the behavior of a correct garbage collector for Lua (abstracted into a
meta-function gcrin weak):

> Suitable notion of reachability for Lua.
» Specifies fields of weak tables than can be removed.

» |dentifies the next table to be finalized.

Formal semantics of GC

@ Extends a previous formalized dynamic semantics for Lua 5.2:

» Small-steps operational semantics, with concepts from reduction semantics with
evaluation contexts.

@ Specification of the behavior of a correct garbage collector for Lua (abstracted into a
meta-function gcrin weak):

> Suitable notion of reachability for Lua.
» Specifies fields of weak tables than can be removed.
> Identifies the next table to be finalized.

» Specifies interaction between both interfaces.

Formal semantics of GC

Non-deterministic execution steps:

(0'/, f, t) = ngin_weak(Ua El[S]I)
o E[s] “FF o E[f(t):s]

18 / 32

Formal semantics of GC

Framework for formal reasoning about GC and sanity-check

o Defines observations over programs (non-termination or returned values), garbage,
etc.

19 / 32

Formal semantics of GC

Framework for formal reasoning about GC and sanity-check

o Defines observations over programs (non-termination or returned values), garbage,
etc.

@ GC-correctness: for a given program p, the observations are preserved by GC-steps
without interfaces to the garbage collector:

obs(p, —) = obs(p, — U £5)

19 / 32

Formal semantics of GC

Framework for formal reasoning about GC and sanity-check

o Defines observations over programs (non-termination or returned values), garbage,
etc.

@ GC-correctness: for a given program p, the observations are preserved by GC-steps
without interfaces to the garbage collector:

obs(p, —) = obs(p, — U £5)

@ We are setting a framework for future discussion on static analysis of Lua programs
and GC.

19 / 32

Mechanization

20 / 32

Mechanization.

@ Implemented using Redex.

/32

github.com/Mallku2/lua-gc-redex-model

Mechanization.

@ Implemented using Redex.

o Tested against Lua 5.2's test suite: 1444 LOCS (from 6902 LOCS).
> gc.lua: 125 LOCs from 445 LOCS.

21 /32

github.com/Mallku2/lua-gc-redex-model

Mechanization.

@ Implemented using Redex.

o Tested against Lua 5.2's test suite: 1444 LOCS (from 6902 LOCS).
> gc.lua: 125 LOCs from 445 LOCS.

o Why?

» Features not covered by our formalization (mostly, library services) and
implementation details (generation of bytecode, performance, etc).

github.com/Mallku2/lua-gc-redex-model

Mechanization.

@ Implemented using Redex.

o Tested against Lua 5.2's test suite: 1444 LOCS (from 6902 LOCS).
> gc.lua: 125 LOCs from 445 LOCS.

o Why?
> Features not covered by our formalization (mostly, library services) and
implementation details (generation of bytecode, performance, etc).

» gc.lua: features not covered by our model (mainly parameters of the
collectgarbage service) and manipulation of large data-structures (performance).

21/ 32

github.com/Mallku2/lua-gc-redex-model

Mechanization.

@ Implemented using Redex.

Tested against Lua 5.2's test suite: 1444 LOCS (from 6902 LOCS).
> gc.lua: 125 LOCs from 445 LOCS.

o Why?
» Features not covered by our formalization (mostly, library services) and
implementation details (generation of bytecode, performance, etc).

» gc.lua: features not covered by our model (mainly parameters of the
collectgarbage service) and manipulation of large data-structures (performance).

Every line of code of the test suite that falls within the scope of this work
successfully passes the tests, except performance tests.

21/ 32

github.com/Mallku2/lua-gc-redex-model

Mechanization.

@ Implemented using Redex.

Tested against Lua 5.2's test suite: 1444 LOCS (from 6902 LOCS).
> gc.lua: 125 LOCs from 445 LOCS.

o Why?
» Features not covered by our formalization (mostly, library services) and
implementation details (generation of bytecode, performance, etc).

» gc.lua: features not covered by our model (mainly parameters of the
collectgarbage service) and manipulation of large data-structures (performance).

Every line of code of the test suite that falls within the scope of this work
successfully passes the tests, except performance tests.

Mechanization available at github.com/Mallku2/lua-gc-redex-model.

21/ 32

github.com/Mallku2/lua-gc-redex-model

Application: LuaSafe

22 /32

Application: LuaSafe

GC+W-+F

o Problem: dp, obs(p,+) # obs(p,— U ")

Application: LuaSafe

GC+W-+F

o Problem: dp, obs(p,+) # obs(p,— U ")

o Let Por = {P ‘ ObS(p7 »—)) = obs(p7 — U GC*,_V;/*F)}

Application: LuaSafe

GC+W-+F

@ Problem: Hp, obs(p,+) # obs(p,— U ")
® Let Per. = {p| obs(p,—) = obs(p, — U “='")}

@ For a given program p that uses weak tables, recognizing p € P..z requires:
» Type information.

23 /32

Application: LuaSafe

GC+W-+F

@ Problem: Hp, obs(p,+) # obs(p,— U ")
® Let Per. = {p| obs(p,—) = obs(p, — U “='")}

@ For a given program p that uses weak tables, recognizing p € P..z requires:
» Type information.

» Weakness of each table.

23 /32

Application: LuaSafe

GC+W-+F

@ Problem: Hp, obs(p,+) # obs(p,— U ")
® Let Per. = {p| obs(p,—) = obs(p, — U “='")}

@ For a given program p that uses weak tables, recognizing p € P..z requires:
» Type information.

» Weakness of each table.

> A syntactic approximation of the reachability tree.

23 /32

Application: LuaSafe

GC+W-+F

o Problem: dp, obs(p,+) # obs(p,— U ")

® Let Per. = {p| obs(p,—) = obs(p, — U “='")}

@ For a given program p that uses weak tables, recognizing p € P..z requires:
» Type information.

» |WNeakness of each table.

> A syntactic approximation of the reachability tree.

o We will try a best-effort approach to recognize membership to Ps.f: no changes to
user code needed.

23 /32

Application: LuaSafe
Type system

With our type system, we need to:

@ Recognize field accessed (and types of key and value), from a given table.

24 /32

Application: LuaSafe
Type system

With our type system, we need to:

@ Recognize field accessed (and types of key and value), from a given table.

@ Recognize weakness of the table being accessed.

24 /32

Application: LuaSafe

Type system

With our type system, we need to:
@ Recognize field accessed (and types of key and value), from a given table.

@ Recognize weakness of the table being accessed.
@ Being able to reason about types of several (possible recursive) data structures

commonly implemented using Lua tables, and related idioms: objects, trees, lists,

etc.

Application: LuaSafe
Type system

@ Primitive types (prmt): nil, num, bool, str

25 /32

Application: LuaSafe

Type system

@ Primitive types (prmt): nil, num, bool, str

@ Singleton types (st): (vs : prmt)
> vg € {nil} U string U boolean U number

25 /32

Application: LuaSafe

Type system

@ Primitive types (prmt): nil, num, bool, str

@ Singleton types (st): (vs : prmt)
> vg € {nil} U string U boolean U number

o Table type: { [st]: t.. } wkness
> wkness € {strong, wk, wv, wkv}

Application: LuaSafe

Type system

@ Primitive types (prmt): nil, num, bool, str

@ Singleton types (st): (vs : prmt)
> vg € {nil} U string U boolean U number

o Table type: { [st]: t.. } wkness
> wkness € {strong, wk, wv, wkv}

» With singleton types, determining weakness of a table reduces to a type
checking problem.

25 / 32

Application: LuaSafe

Type system

Primitive types (prmt): nil, num, bool, str

Singleton types (st): (vs : prmt)
> vg € {nil} U string U boolean U number

Table type: { [st]: t.. } wkness
> wkness € {strong, wk, wv, wkv}

» With singleton types, determining weakness of a table reduces to a type
checking problem.

@ Recursive types: py. t
> Just for table types.

25 / 32

Application: LuaSafe

Type system

Type inference

@ Based on previous work on type inference for JavaScript!.

! Anderson, Christopher and Giannini, Paola and Drossopoulou, Sophia. Towards Type Inference for
JavaScript. In Proceedings of the 19th European Conference on Object-Oriented Programming, ECOOP’05.

26 /32

Application: LuaSafe

Type system

Type inference

@ Based on previous work on type inference for JavaScript!.

o Type inferred: solution of a set of constraints about sub-typing relation between
possible types for the expressions of the program.

! Anderson, Christopher and Giannini, Paola and Drossopoulou, Sophia. Towards Type Inference for
JavaScript. In Proceedings of the 19th European Conference on Object-Oriented Programming, ECOOP’05.

26 / 32

Application: LuaSafe

Syntactic approximation of the reachability tree.

For a given point into a program, we use the set of reaching definitions to determine
reachability.

Application: LuaSafe

Syntactic approximation of the reachability tree.

For a given point into a program, we use the set of reaching definitions to determine
reachability.

1 local cachel = {[1] = function() return 1 end,
2 [2] = function() return 2 end,
3 [3] = function() return 3 end}
4 reach. def: { cachel = {[1] =... } }

5 local obj = {method = cachel[1], attr = {}}

6 {cachel ={[1] = ... },

7 obj = method = cachel[1], ...} }

8 local cache2 = {[1] = cachel[2]}

9 {cachel ={[1] = ... },

10 obj = {method = cachel[1], ...},

11 cache2 = {[1] = cachel[2]} }

12 setmetatable(cachel, { _mode = "Vv"})

13 setmetatable(cache2, { __mode = "v"})

14 cachel [1]() <+ same set of reach. defs is preserved up to
15 cachel[2]() this point

16 cachel [3]()

27 / 32

Application: LuaSafe

E_>| type inf. |—7/ptyped /L>|rch. def|—7/cfgrch_def/L>| type check. |—7/p € Psafe?/
]

28 /32

Application: LuaSafe

1 local cachel = {[1] = function() return 1 end,
2 [2] = function() return 2 end,
3 [3] = function() return 3 end}
4 local obj = {method = cachel[l], attr = {}}

5 local cache2 = {[1] = cachel[2]}

6 setmetatable(cachel, { __mode = "Vv"})

7 setmetatable(cache2, { __mode = "Vv"})

8 cachel[1]()

9 cachel[2]()

10 cachel [3]()

" Access to:
"cachel [2]
"may exhibit nondeterministic behavior’
" Access to: "
"cachel [3]
"may exhibit nondeterministic behavior”

1

Figure: Implementation of a simple cache.

29 / 32

Future work

30 /32

Future work

Include missing Lua features.

Redex — Coq:
» Machine-checked proofs.
» Extraction of a verified interpreter.
@ Improve LuaSafe:
» Soundness of static analysis.
> Improve type inference.
> Better syntactic approx. of reach. tree.
» Improve performance.

Recognition of semantic garbage based on type checking.

31/ 32

Thanks!

32 /32

