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Abstract9

We propose the first step in the development of a tool to automate the translation of Redex models10

into a semantically equivalent model in Coq, and to provide tactics to help in the certification of11

fundamental properties of such models.12

The work is based on a model of Redex’s semantics developed by Klein et al. In this iteration,13

we were able to code in Coq a primitive recursive definition of the matching algorithm of Redex,14

and prove its correctness with respect to the original specification. The main challenge was to find15

the right generalization of the original algorithm (and its specification), and to find the proper16

well-founded relation to prove its termination.17

Additionally, we also adequate some parts of our mechanization to prepare it for the future18

inclusion of Redex features absent in Klein et al., such as the Kleene’s closure operator.19
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1 Introduction25

Redex [7] is a DSL built on top of the Racket programming language, which allows for the26

mechanization of reduction semantics models and formal systems. It includes a variety of27

tools for testing the models, including: unit testing; random testing of properties; and a28

stepper for step-by-step reduction sequences. Given its tookit, Redex has been successfully29

used for the mechanization of large semantics models of real programming languages (e.g.,30

JavaScript [9, 16]; Python [17]; Scheme [13]; and Lua [21, 20, 19]).31

The approach of Redex to semantics engineering involves a lightweight development of32

models that focuses on a quick transition between specification of models and testing of their33

properties. These virtues of Redex enable it as a useful tool with which to perform the first34

steps of a formalization effort. Nonetheless, when a given model seems to be thoroughly35

tested and mature, one still might need to prove its desired properties, since no amount of36

testing can guarantee the absence of errors [4].37

Redex does not offer tools for formal verification of a given model, and there are no38

automatic tools to export the model into some proof assistant. Hence, for verification39

purposes, a given model must be written again entirely into a proof assistant. Besides being40

a time-consuming process, another downside is that the translation into the proof assistant41

may be guided just by an intuitive understanding of the behavior of the mechanization in42

Redex. Intuitive understanding that could differ from the actual behavior of the model in43

Redex. This is so, since the tool implements a particular meaning of reduction semantics with44
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evaluation contexts, offering an expressive language to the user that includes several features,45

useful to express concepts like context-dependent syntactic rules. The actual semantics of46

this language may not coincide with what the researcher understands [5].47

We propose to build a tool to automatically translate a given model in Redex into48

an equivalent model in Coq. The interpretation of the resulting model is done through49

a shallow embedding in Coq of Redex’s actual semantics. In that regard, we note that50

there exist already several implementations of some of the concepts of reduction semantics51

with evaluation contexts (see §5). However, they are not specific to Redex’s semantics, and52

therefore miss some crucial concepts, such as its support for evaluation contexts and its53

Kleene’s closure operator.54

Summary of the contributions.55

In this work we present a first step into the development of a tool to automate the translation56

of a Redex model into a semantically equivalent model in Coq, and to provide automation57

to the proof of essential properties of such models. The present work is heavily based on58

RedexK, the model of Redex’s semantics developed by [5]. In summary:59

We mechanize RedexK in Coq. In the process, we develop a proof of termination for60

the matching algorithm, which enables its mechanization into Coq as a regular primitive61

recursion.62

We modify RedexK to prepare it for the future addition of features, like the Kleene’s63

closure operator, and the development of tactics to decide about properties of reduction64

semantics models.65

We prove soundness properties of the matching algorithm with respect to its specification.66

We prove the correspondence of our algorithm with respect to the original proposal67

present in RedexK.68

The reader is invited to download the accompanying source code from69

https://github.com/Mallku2/redex2coq70

The remainder of this paper is structured as follows: §2 presents a brief introduction to71

reduction semantics, as presented in Redex; §3 offers a general overview of our mechanization72

in Coq; §4 presents the main soundness results proved within our mechanization; §5 discuss73

about related work from the literature of the area; finally, §6 summarizes the results presented74

in this paper and discusses future venues of research enabled by this first iteration of our75

tool.76

2 Redex77

In this section, we present a brief introduction to Redex’s main concepts, limiting our attention78

to the concepts that are relevant to our tool in this first iteration of the development. As a79

running example, we show how to mechanize in Redex a fragment of λ-calculus with normal80

order call-by-value reduction. For a better introduction to these topics, the reader can consult81

[7, 10] and the original paper on which our mechanization is based [5].82

Redex can be viewed as a particular implementation of Reduction Semantics with83

Evaluation Contexts (RS), in which semantical aspects of computations are described as84

relations over syntactic elements (terms) of the language.85

As a simple introductory example, Figure 1 shows part of a specification for a call-86

by-value λ-calculus. The grammar of the language is defined with the first command,87

https://github.com/Mallku2/redex2coq
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Figure 1 Definition of a language in Redex.

define−language. The language called lambda contains non-terminals e (representing any88

λ-term), v (values; in this case only λ-abstractions), x (variables; defined with pattern89

variable−not−otherwise−mentioned, meaning the symbols that are not used as literals90

elsewhere in the language) and E (evaluation contexts, to be explained below). The right-hand91

side of the productions of each non-terminal are shown to the right of the ::= symbol.92

The productions of non-terminal E indicate that an evaluation context could be a single93

hole, or a context of the form E’ e, where E’ is another evaluation context; or a context of the94

form v E’. Note that the consequence of this definition is that we are imposing normal-order95

reduction.96

The reduction relation is defined with the keyword reduction−relation. It defines a97

relation between terms (e), from the previously defined lambda language, consisting of a98

single contraction, beta_contraction. This rule explains two things: how β-contractions99

are done; and the order in which those contractions can occur, effectively imposing the100

order of evaluation. The rule states that if a term can be decomposed into context E and101

an abstraction application ((λ x e) v) (pattern (in−hole E ((λ x e) v))), then, the original102

term reduces to the phrase resulting from plugging the result of substituting x by v in e into103

the context E (pattern in−hole E (substitute e x v)).104

As an example, consider the term ((λ w w) (λ y y)) (λ z z). In order to match the left-105

hand side of the rule, it decomposes the term into context E = hole (λ z z), matching x with106

w, e with w, and v with (λ y y). The result is the term (λ y y) (λ z z).107

We won’t delve into the details of the substitute meta-function, but it will be useful108

to explain one of its components: the list of free variables of a term, fv, partially shown109

in Figure 1. This meta-function is defined using the define−metafunction keyword. The110

signature of the function, fv : e → (x ...) , states that fv receives a λ-term, and returns a111

list of 0 or more variables (pattern x ... , to be explained below). After the signature, we112

have 2 equations explaining which are the free variables: in a term that is a single variable113

x or an application e1 e2. For reasons of space, we do not show equations referring to the114

cases where the term under consideration is a λ-abstraction.115

The pattern p ... is called the Kleene’s closure of a pattern, and expresses the idea of116

“zero or more terms” that match a given pattern p. For example, the first where clause of117

the second equation imposes a condition that holds only when the expression fv e1 matches118

the pattern x1 ..., meaning that fv e1 must evaluate to a list of 0 or more variables. Redex119

bind that list with x1 ..., and we can use this pattern to refer to this list. In particular, in120

this case we return x1 ... followed by the variables resulting from evaluating fv e2 (that is,121

x2 ...). As a last comment, it is possible to express context-dependent restrictions by using122

specific indexes: for example, pattern (x_1 x_1) only matches a list of two equal variables;123

and pattern (x_!_ x_!_) only matches a list of two different variables.124
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Inductive term := lit_term : lit → term
| list_term_c : list_term → term
| contxt_term : contxt → term

with list_term := nil_term_c : list_term | cons_term_c : term → list_term → list_term
with contxt := hole_contxt_c : contxt | list_contxt_c : list_contxt → contxt
with list_contxt := hd_contxt : contxt → list_term → list_contxt

| tail_contxt : term → list_contxt → list_contxt.

Figure 2 Language of terms.

3 Expressing Redex in Coq125

In this section, we introduce the main ideas behind our implementation in Coq. Later, in §4,126

we describe the main soundness properties that we mechanized.127

To introduce the simpler parts of the mechanization, we will show listings of our source128

code together with some natural language explanation. The more complex portions of129

the mechanization (like the matching/decomposition algorithm), will be described more130

abstractly.131

3.1 Language of terms and patterns132

We begin the presentation by introducing our mechanized version of the language of terms133

and patterns. We ask for some reasonable decidability properties about the language that134

we use to describe a given reduction semantics model. These standard properties will be135

useful to develop our mechanization in its present version, and more so in the prospective136

future of the development.137

3.1.1 Symbols138

The module type Symbols abstracts the atomic elements of the language of terms and patterns:139

literals (lit), non-terminals (nonterm), and pattern variables (var, also sub-indexes used140

in the patterns). We require that these types are also instances of the stdpp’s typeclass141

EqDecision [23]. Details can be found in file patterns_terms.v.142

3.1.2 Terms143

In RedexK, terms are classified according to their structure, or if they act as a context or144

not. According to their structure, terms are classified as atomic literals or with a binary-tree145

structure. In our case, we will generalize the notion of “terms with structure”. One of the146

most prominent features absent in RedexK is the Kleene’s closure operator. In order to be147

able to include this feature in a future iteration of our model, we begin by generalizing the148

notion of structured terms. We will allow them to be lists of 0 or more terms. Non-empty149

lists can also be considered as binary trees, but where the right sub-tree of a given node is150

always a list. We will enforce that shape through types.151

The language of terms is presented in Figure 2. A term consisting of a literal is built with152

constructor lit_term, while structured terms are captured and enforced through a type,153

list_term. Structured terms can be an empty list, built with nil_term_c, or a list with154

one term as its head, and some list as its tail, using constructor cons_term_c. Finally, we155

define an injection into terms, list_term_c.156
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Inductive pat := lit_pat : lit → pat | hole_pat : pat
| list_pat_c : list_pat → pat | name_pat : var → pat → pat
| nt_pat : nonterm → pat | inhole_pat : pat → pat → pat
with list_pat := nil_pat_c : list_pat | cons_pat_c : pat → list_pat → list_pat.

Figure 3 Language of patterns.

The other kind of terms considered in RedexK are contexts. Contexts include information157

about where to find the hole, to help the algorithms of decomposition and plugging. That158

information consists in a path from the root of the term (seen as a tree) to the leaf that159

contains the hole. To that end, RedexK defines a notion of context that, if it is not just a160

single hole, it contains a tag indicating where to look for the hole: either into the left or the161

right sub-tree of the context. We preserve the same idea, adapted to our presentation of162

structured terms.163

We introduce the type contxt, to represent and enforce through types the notion of164

contexts. These contexts can be just a single hole (hole_contxt_c) or a list of terms with165

some position marked with a hole. In order to guarantee the presence of a hole into this166

last kind of contexts, we introduce the type list_contxt. These contexts can point into167

the first position of a given list (hd_contxt) or the tail (tail_contxt). Finally, we have168

the injections from list_contxt into contxt (list_contxt_c), and from contxt into term169

(contxt_term). These injections, naturally, are used later as coercions.170

3.1.3 Patterns171

As mentioned in §2, Redex offers a language of patterns with enough expressive power172

to state context-dependent restrictions. We mechanize the same language of patterns as173

presented in RedexK, with the required change to accommodate our generalization done174

to structured terms, as explained in the previous sub-section. The language of patterns is175

presented in Figure 3.176

Pattern lit_pat l matches only a single literal l . Pattern hole_pat matches a context177

that is just a single hole. In order to describe the new category of structured terms that we178

presented in the previous subsection, we add a new category of patterns enforced through179

type list_pat. From this category of patterns, pattern nil_pat_c matches a list of 0 terms,180

while pattern cons_pat_c phd ptl matches a list of terms, whose first term matches pattern181

phd, and whose tail matches the pattern ptl. Finally, we have a injection from this category182

of patterns into the type pat: list_pat_c.183

Context-dependent restrictions are imposed through pattern name_pat x p. This pattern184

matches a term t that, in turn, must match pattern p. As a result, the pattern name_pat x185

p introduces a context-dependent restriction in the form of a binding, that assigns pattern186

variable x to term t. Data-structures to keep track of this information will be introduced187

later, but for the moment, just consider that during matching some structures are used188

to keep track of all of this context-dependent restrictions that have the form of a binding189

between a pattern variable and a term. If, at the moment of introducing the binding to x ,190

there exist another binding for the same variable but with respect to a term different than t,191

the whole matching fails.192

Pattern nt_pat e matches a term t, if there exist a production from non-terminal e,193

whose right-hand-side is a pattern p that matches term t.194

Finally, pattern inhole_pat pc ph matches some term t, if t can be decomposed between195
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some context C , that matches pattern pc, and some term t’, that matches pattern ph. It196

should be possible to plug t’ into context C , recovering the original term t. Note that the197

information contained in the tag of each kind of non-empty context, that indicates where to198

find the hole, helps in this process: at each step the process looks, either, into the head of199

the context or into its tail.200

3.1.4 Decidability of predicates about terms and patterns201

We want to put particular emphasis on the development of tools to recognize the decidability202

of predicates about terms and patterns. This could serve as a good foundation for the future203

development of tactics to help the user automate as much as possible the process of proving204

arbitrary statements about the user’s reduction semantics models.205

As a natural consequence of our first assumptions about the atomic elements of the206

languages of terms and patterns, presented in §3.1.1, we can also prove decidability results207

about definitional equalities among terms and patterns. Another straightforward consequence208

involves the decidability of definitional equalities between values of the many data-structures209

involved in the process of matching. Future efforts will be put in developing further this210

minimal theory about decidability (see §6).211

3.1.5 Grammars212

The notion of grammar in Redex, as presented in §2, is modeled in RedexK as a finite mapping213

between non-terminals and sets of patterns. Our intention is not to force some particular214

representation for grammars, beyond the previous description. As a first step, we axiomatize215

some assumptions about grammars through a module type. We begin by defining a production216

of the grammar, simply, as a pair inhabiting nonterm ∗ pat, and we define a productions217

type as a list of type production. We also ask for the existence of computational type218

grammar, a constructor for grammars (inhabiting productions → grammar), the possibility219

of testing membership of a production with respect to a grammar, and to be possible to220

remove a production from a grammar (remove_prod). We ask for some notion of length of221

grammars, and that remove_prod actually affects that length in the expected way. This222

will be useful to guarantee the termination property of the matching algorithm (see §3.2.1).223

Finally, we ask for some reasonable decidability properties for these types and operations:224

decidability of definitional equalities among values of the previous types, and, naturally, for225

the testing of membership of a production with respect to a given grammar.226

Abstracting these previous types and properties in a module type (Grammar), could227

serve in the future when developing further our theory of decidability for the notion of228

RS implemented in Redex. As a simple example, separating the type productions from229

the actual definition of the type grammar, allows for the encapsulation of properties in the230

type grammar itself, that specifies something about the inhabitants of productions. Some231

decidability results depend on a grammar whose productions are restricted in some particular232

way.1233

For this first iteration, we provide an instantiation of the previous module type with a234

grammar implemented using a list of productions. Here, the type grammar does not impose235

new properties over the type productions. We also provide a minimal theory to reason236

1 For example, while the general language intersection problem for context-free grammars (CFG) is
non-decidable, the intersection problem between a regular CFG and a non-recursive CFG is decidable
[14].
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about grammars as lists, that helps in proving the required termination and soundness237

properties of the matching algorithm. This is required since our previous axiomatization238

of grammars, through module type Grammar, is not strong enough to prove every desired239

property of our algorithm. A goal for a next iteration would be to take advantage of the240

experience with this development, and strengthen our axiomatization of grammars.241

3.2 Matching and decomposition242

The first challenge that we encounter when trying to mechanize RedexK, was finding a243

primitive recursive algorithm to express matching and decomposition. The original algorithm244

from RedexK is not a primitive recursion, for reasons that will be clear below. However, the245

theory developed in the paper, to check the soundness of this algorithm and to characterize246

the inputs over which it actually converges to a result, helped us to recapture the matching247

and decomposition process as a well-founded recursion.248

3.2.1 Well-founded relation over the domain of matching/decomposition249

In Coq, a well-founded recursion is presented as a primitive recursion over the evidence of250

accessibility of a given element (from the domain of the well-founded recursion), with respect251

to a given well-founded relation R. That is, it is a primitive recursion over the proof of a252

statement that asserts that, from a given actual parameter x over which we are evaluating a253

function call, there is only a finite quantity of elements which are smaller than x, according254

to relation R. These smaller elements are the ones over which the recursive calls can be255

evaluated. In other words: R does not contain infinite decreasing chains, and, hence, the256

number of recursive calls is always finite. Such relation R is called well-founded.257

The actual steps of matching/decomposition will be presented in detail below. But,258

for the moment, in pursuing a well-founded recursive definition for the matching/decom-259

position process, let us observe that, for a given grammar G , pattern p and term t, the260

matching/decomposition of t with p involves, either:261

1. Steps where the input term t is decomposed or consumed.262

2. Steps where there is no input consumption, but, either:263

a. The pattern p is decomposed or consumed.264

b. The productions of the grammar G are considered, searching for a suitable pattern265

that allows matching to proceed.266

Step 1 corresponds, for example, to the case where t is a list of terms of the form267

cons_term_c thd ttl, and p is a list of patterns of the form cons_pat_c phd ptl. Here, the268

root of each tree (t and p) match, and the next step involves checking if thd matches pattern269

phd, and if ttl matches ptl.270

Step 2a corresponds, for example, to the case where pattern p has the form name_pat271

x p’: as described in §3.1.3, the next step in matching/decomposition involves checking if272

pattern p’ matches t. Here, the step does not involve consumption of input term t, but it273

does involve a recursive call to matching/decomposition over a proper sub-pattern of p.274

Finally, step 2b corresponds to the case of pattern nt_pat n, which implies looking for275

productions of n in G that match t. Here, there is no reduction of terms and this process276

does not neccesarily imply the reduction of patterns.277

If not because for the pattern nt_pat, it could be easily argued that the process previ-278

ously described is indeed an algorithm. Now, if we do take into account nt_pat patterns,279

termination in the general case does no longer holds. In particular, non-termination could280
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be observed with a left-recursive grammar G and a given non-terminal n that witnesses the281

left-recursion of G . Matching pattern nt_pat n, following the described process, could get282

stuck repeating the step of searching into the productions of n, without any consumption of283

input: from pattern nt_pat n we could reach to the same pattern nt_pat n.284

Indeed, the described matching algorithm does not deal with left-recursion, as is argued285

in [5]. There, the property of left-recursion is captured by providing a relation →G that286

order patterns as they appear during the previously described phase of the matching process,287

when the input term is not being consumed, but there is decomposition of a pattern and/or288

searching into the grammar, looking for a proper production to continue the matching. Then,289

a left-recursive grammar would be one that makes the chains of the previous relation to290

contain a repeated pattern. In particular, during matching, we could begin with a pattern291

nt_pat n and reach the same pattern without consuming input, repeating this process over292

and over again.293

Then, if, for a non left-recursive grammar G and non-terminal n from G , it is the case294

that p ̸→+
G p for any pattern p (where →+

G is the transitive closure of →G), it must be the295

case that also nt_pat n ̸→+
G nt_pat n. This means that, when searching for productions of296

n in G , and as long as the matching/decomposition is in the stage captured by →G , (i.e., no297

consumption of input), it should be possible to discard the productions from the grammar G298

being tested.299

The previous observation helps us argue that, provided that G is non left-recursive, when300

the matching process enters the stage of non-consumption of input, this phase will eventually301

finalize: either, the pattern under consideration is totally decomposed and/or we run out302

of productions from G . In what follows, we will assume only non-left-recursive grammars.303

This does not impose a limitation over our model of Redex, since it only allows such kind of304

grammars.305

We will exploit the previous observations to build a well-founded relation over the domain306

of our matching/decomposition function. The technique that we will use will consist in, first,307

modeling each phase in isolation through a particular relation. There will be a relation <t:308

term → term → Prop explaining what happens to the input when it is being consumed, and309

a relation <p×g : pat × grammar → pat × grammar → Prop, explaining what happens to the310

pattern and the grammar when there is no consumption of input. We will also prove the well-311

foundedness of each relation. The final well-founded relation for the matching/decomposition312

function will be the lexicographic product of the previous relations, a well-known method to313

build new well-founded relations out of other such relations [15]. We will parameterize this314

relation by the original grammar, to be able to recover the original productions when needed315

(see §3.2.4 for details). For a given grammar g , we will denote this last relation with <g
t×p×g.316

Note that its type will be term × pat × grammar → term × pat × grammar → Prop.317

For a tuple (t, p, G) to be related with another smaller tuple (t’, p’, G’), according to318

<g
t×p×g, it must happen that t’ <t t ∨ (t’ = t ∧ (p’, G’) <p×g (p, G)). This expresses the319

situations where there is actual progress in the matching/decomposition algorithm towards320

a result: either there is consumption of input or the phase of production searching and321

decomposition of the pattern progresses towards its completion. Note that this definition322

shows that the lexicographic product is a more general relation, that contains chains of tuples323

that do not necessarily model what happens during matching and decomposition: if t’ <t t,324

then (t’, p’, G’) <g
t×p×g (t, p, G), for some grammar g , regardless of what (p’, G’) and (p, G)325

actually are. Later, when presenting the relations that form this lexicographic product, we326

will also specify which are the actual chains that we will consider when modeling the process327

of matching and decomposition. We will refer to these last kind of chains as the chains of328
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(pc, G) <p×g (inhole_pat pc ph, G) (ph, G) <p×g (inhole_pat pc ph, G)

(p, G) <p×g (name_pat x p, G)
p ∈ G(n) G’ = G \ (n, p)
(p, G’) <p×g (nt_pat n, G)

Figure 4 Consumption of pattern and productions.

interest.329

In particular, this means that we will define a more general relation, that is simpler to330

define and to work with, but that still retains the desired properties: it will be well-founded331

and will contain the chains of interest, besides other meaningless chains.332

3.2.2 Input consumption333

We define the relation <t to be exactly <subt, where <subt will denote the relation subterm_rel334

: term → term → Prop, that links a term with each of its sub-terms. This describes an335

order that coincides with that in which the input is consumed, for the actual specification336

of matching and decomposition. This does not avoid for more exotic patterns, that could337

be introduced in the future, to have a different behavior on input consumption. Hence, the338

distinction between what constitutes a relation like <t and what simply is <subt.339

3.2.3 Pattern and production consumption340

The specification of <p×g, shown in Figure 4, matches the cases 2a and 2b described in §3.2.1.341

Recall that, in this case, the algorithm entered a phase where the pattern is being decomposed342

or productions from some non-terminal are being tested, to see if matching/decomposition343

can continue.344

Matching a term t with a pattern of the form inhole_pat pc ph, means trying to345

decompose the term between some context that matches pattern pc, and some sub-term of t346

that matches pattern ph. In doing so, the first step involves a decomposition process (to be347

specified later in §3.2.5), that begins working over the whole term t, and with respect to348

just the sub-pattern pc. Hence, this step does not involve input consumption, but it does349

involve considering a reduced pattern: pc. We just capture this simple fact through <p×g,350

by stating that (pc, G) <p×g (inhole_pat pc ph, G) holds, for any grammar G . Note that351

we preserve the grammar.352

In the particular case that pc matches hole_contxt_c, then there is no actual decom-353

position of the term t. This means that, when looking for said sub-term of t that matches354

pattern ph, we will still being considering the whole input term t. Again, we just capture this355

simple fact by stating that (ph, G) <p×g (inhole_pat pc ph, G) holds, for any grammar G .356

The case for the pattern name_pat x p can be explained on the same basis as with the357

previous cases.358

Finally, the last case refers to the pattern nt_pat n: it involves considering each produc-359

tion of non-terminal n in G . Here it is assumed that G contains the correct set of productions360

that remain to be tested (an invariant property about G through our algorithm). Then,361

we continue the process considering a grammar G’ that contains every production from G ,362

except for (n, p): the already considered production of non-terminal n with right-hand-side p.363

We denote it stating that G’ equals the expression G \ (n, p).364
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p ∈ G’(n) G ⊢ t : pG’ \ (n, p) | b
G ⊢ t : (nt_pat n)G’ | ⊘

G ⊢ thd : (phd)G | bhd G ⊢ ttl : (ptl)G | btl

G ⊢ cons_term_c thd ttl : (cons_pat_c phd ptl)G’ | bhd ⊔ btl

G ⊢ t = C [[th]] : (pc)G’ | bc th <subt t G ⊢ th : (ph)G | bh

G ⊢ t : (inhole_pat pc ph)G’ | bc ⊔ bh

Figure 5 Generalized specification of matching.

3.2.4 Specification of matching365

We now explain our specification for matching and decomposition, which is a slight generaliza-366

tion from that of RedexK [5]. In the original specification, the judgment about matching has367

the form G ⊢ t : p | b, stating that pattern t matches pattern p, under the productions from368

grammar G , producing the bindings b (which could be an empty set of bindings, denoted369

with ⊘). A seemingly obvious fact is that the non-terminals that may appear on pattern370

p will be interpreted in terms of the productions from G . In our presentation, we relax371

this assumption, and allow the non-terminals to be interpreted in terms of some arbitrary372

grammar G’, which in practice will be a subset of G .373

Therefore, our judgment is of the form G ⊢ t : pG’ | b, with the particular difference374

that, initially, we interpret the non-terminals from p with grammar G’. Only when input375

consumption begins, we restore the original grammar G . Figure 5 presents a simplified376

fragment of our formal system. Following a top-down order, the first rule applies when a377

term t matches a pattern nt_pat n, when the non-terminals of this pattern (in this case,378

just n) are initially interpreted in terms of the productions of G’: then, that matching is379

successful if there exist some p ∈ G’(n), such that t matches p, when its non-terminals are380

initially interpreted under the productions from the grammar G’ \ (n, p). Recall that this381

means that this last grammar will be used as long as there is no input consumption, or382

there is no other appearance of a pattern nt_pat. Again, we are following the chains from383

<p×g. Also, the non-left-recursivity of the grammars being considered guarantee that this384

replacement of the grammars is semantics-preserving: we will not need another production385

from n, as long as there is no input consumption. Finally, note that this match does not386

produce bindings.387

The second rule can be understood in terms of the previously introduced concepts. Note388

that, for each recursive proof of matching over sub-terms and sub-patterns, we re-install the389

original grammar G . We denote with ⊔ the union of bindings, which is undefined if the same390

name is bound to different terms.391

The last case in Figure 5 refers to the matching of a term t with a pattern of the form392

inhole_pat pc ph. This operation is successful when we can decompose term t between393

some context that matches pattern pc, and some sub-term, that matches pattern ph. In394

order to fully formalize what this matching means, we need to explain what decomposition395

means. RedexK specifies this notion through another formal system, whose adaptation to our396

work we present in the following sub-section. The original system allows us to build proofs397

for judgments of the form G ⊢ t = C [[t’]] : p | b, meaning that we can decompose term t,398
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G ⊢ thd = C [[t’hd]] : (phd)G | bhd G ⊢ ttl : (ptl)G | btl

G ⊢ cons_term_c thd ttl = (hd_contxt C ttl)[[t’hd]] : (cons_pat_c phd ptl)G’ | bhd ⊔ btl

G ⊢ t = Cc[[tc]] : (pc)G’ | bc tc <subt t G ⊢ tc = Ch[[th]] : (ph)G | bh

G ⊢ t = (Cc + + Ch)[[th]] : (inhole_pat pc ph)G’ | bc ⊔ bh

Figure 6 Generalized specification of decomposition.

between some context C , that matches pattern p, and some sub-term t’. The decomposition399

produces bindings b, and the non-terminals from pattern p are interpreted through the400

productions present in grammar G . In our case, we modify this judgment by generalizing401

it in the same way done for the matching judgment: G ⊢ t = C [[t’]] : pG’ | b, including the402

possible interpretation of non-terminals in p, initially, using grammar G’.403

Returning to the case about inhole_pat patterns in Figure 5, note that our intention404

is to distinguish the case where the decomposition step actually consumes some portion405

from t (shown in the rule), from the case where it does not (not shown in Figure 5). The406

first situation (described in the rule for inhole_pat) means that context C is not simply407

a hole, and th is an actual proper sub-term of t: i.e., th <subt t. Also, note that the408

decomposition is proved interpreting (initially) the non-terminals from pc with production409

from the arbitrary grammar G’ ((pc)G’). And the proof of the matching between th and ph410

is done interpreting the non-terminals of this last pattern with productions from the original411

grammar G ((pc)G). On the contrary, when the decomposition step does not consume some412

input (pattern pc matches against a hole, and the resulting term th is exactly t), the proof413

of the matching between th and ph is done considering the arbitrary grammar G’.414

3.2.5 Specification of decomposition415

The final part of the specification concerns the decomposition judgment required for the416

inhole_pat pattern. We already mentioned what it does and how it is generalized; we417

proceed to explain the relevant rules listed in Figure 6.418

The first rule explains the decomposition of a list of terms cons_term_c thd ttl, between419

a context that matches a list of patterns cons_pat_c phd ptl, and some sub-term. In the420

particular case of the first rule, the hole of the resulting context is pointing to somewhere421

in the head of the list of terms. This information is indicated by the constructor of the422

resulting context: hd_contxt C ttl, where C is some context that must match pattern phd,423

as indicated in the premise of the inference rule. Note that the whole premise is stating that424

the decomposition occurs in the head of the list of terms (thd), and the resulting sub-term425

is t’hd. Then, the side-condition from the inference rule states that the tail of the original426

input term, ttl, must match the tail of the list of patterns ptl. Finally, note that in the427

decomposition through sub-pattern phd, and the matching sub-pattern ptl, the non-terminals428

of these patterns are interpreted in terms of productions from the original grammar, G .429

With respect to the remaining rule, the case of the inhole_pat pattern, it handles430

the matching of pattern inhole_pat (inhole_pat pc ph) ph′ with some term t. The431

semantics of this case involves a first step of decomposition of t between some context that432

matches sub-pattern inhole_pat pc ph, and some sub-term that matches sub-pattern ph′ .433
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Definition binding := var ∗ term.
Inductive decom_ev : term → Set :=

| empty_d_ev : forall (t : term), decom_ev t
| nonempty_d_ev : forall t (c : contxt) subt,

{subt = t ∧ c = hole_contxt_c} + {subterm_rel subt t} → decom_ev t.
Inductive mtch_ev : term → Set :=

mtch_pair : forall t, decom_ev t → list binding → mtch_ev t.

Figure 7 Mechanization of decomposition and matching results.

In the rule shown in Figure 6, we are describing what it means, in this situations, that434

first step of decomposing t in terms of a context that matches pattern inhole_pat pc ph.435

Since the whole pattern must match some context, it means that, both, pc and ph, are436

patterns describing contexts. Note that we distinguish the case where pc produces an empty437

context, from the case where it does not (not shown in Figure 6). This distinction allows us438

to recognize whether we should interpret non-terminals from patterns through the original439

grammar G or the arbitrary grammar G’.440

The last piece of complexity of the rule for the inhole_pat pattern resides in the actual441

context that results from the decomposition. Here, the authors of RedexK, expressed this442

context as the result of plugging one of the obtained contexts within the other, denoted443

with the expression Cc + + Ch: this represents the context obtained by plugging context Ch444

within the hole of context C c, following the information contained in the constructor of this445

last context to find its actual hole. For reasons of space we elude this definition, though it446

presents no surprises.447

3.2.6 Matching and decomposition algorithm448

We close this section presenting a simplified description of the matching and decomposition449

algorithm adapted for its mechanization in Coq. We remind the reader that this algorithm450

is just a modification of the one proposed for RedexK [5].451

The previous specification of the algorithm cannot be used directly to derive an actual452

effective procedure to compute matching and decomposition. In particular, the rules for453

decomposition of lists of terms (second and third rules from Figure 6) do not suggest effective454

meanings to determine whether to decompose on the head, and match on the tail, or vice455

versa. To solve this issue, and the complexity problem that could arise from trying to naively456

perform both kind of decomposition simultaneously, the algorithm developed for RedexK457

performs matching and decomposition simultaneously, sharing intermediate results.458

Supporting data-structures.459

In Figure 7 we show some of the implemented data-structures used to represent the results460

returned by RedexK’s algorithm. The result of a matching/decomposition of a term t (with461

some given pattern) will be represented through a value of type mtch_ev t. Making the type462

dependent on t is done for soundness checking.463

For reasons of brevity, when presenting the algorithm we will avoid the actual concrete464

syntax from our mechanization. A value of type mtch_ev t will be denoted as (d , b), where465

d is a value of type decom_ev t (explained below), and b is a list of bindings (also shown466

in Figure 7). For a value of the list type mtch_powset_ev t, we will denote it decorating it467

with its dependence on the value t: [(d , b), ...]t468
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Mev_gen(g1, (t, p, g2), Map) = [(d , b) | d ∈ select(thd, dhd, ttl, d tl, t, sub),
sub : subterms t thd ttl, b = bhd ⊔ btl,

(dhd, bhd)thd
∈ Map(tphd, lthd), (d tl, btl)ttl

∈ Map(tptl, lttl),
lthd : tphd <

g1
t×p×g tpcons, lttl : tptl <

g1
t×p×g tpcons,

tpcons = (t, p, g2), tphd = (thd, phd, g1), tptl = (ttl, ptl, g1)]t
with t = cons thd ttl p = cons phd ptl

Mev_gen(g1, (t, p, g2), Map) = [(d , b) | d = combine (t, C , tc, ev , dh),
b = bc ⊔ bh, (dh, bh)tc ∈ Map(tph, lth),
lth : tph <

g1
t×p×g tpinhole, tph = (tc, ph, gh),

gh according to Figure 5,

((C , tc)ev
t , bc)t ∈ Map(tpc, ltc), ltc : tpc <

g1
t×p×g tpinhole,

tpinhole = (t, p, g2), tpc = (t, pc, g2)]t
with p = in-hole pc ph

Figure 8 Generator function for the matching and decomposition algorithm.

Values inhabiting type decom_ev t represent a decomposition of a given term t, between469

a context and a sub-term. We include in the value some evidence of soundness of the470

decomposition: a sub-term subt extracted in the decomposition is either t itself, or a proper471

sub-term of t .472

Since a value of type mtch_ev t could represent a single match or a single decomposition,473

following [5] we distinguish an actual match using an empty decomposition empty_d_ev t.474

Otherwise, a decomposition is represented through the value nonempty_d_ev t C subt ev , for475

context C , sub-term subt and soundness evidence ev . We denote such values as (C , subt)ev
t .476

Matching and decomposition algorithm as a least-fixed-point.477

We capture the intended matching/decomposition algorithm as the least fixed-point of a478

generator function or functional of the following type:479

480
forall (g1 : grammar) (tpg1 : (term ∗ pat ∗ grammar)),481

(forall tpg2 : (term ∗ pat ∗ grammar),482

matching_tuple_order g1 tpg2 tpg1 → list (mtch_ev (fst tpg2)))483

→ list (mtch_ev (fst tpg1))484485

The family of generator functions Mev_gen of this type is parameterized over grammars486

and tuples of terms and patterns. Also, these functions receive a candidate of matching/de-487

composition that they will improve: they will construct the result by optionally calling the488

candidate over tuples that are provably smaller that the given tuple tpg1, according to489

the well-founded order (matching_tuple_order g1 tpg2 tpg1, see §3.2.1). Hence, Mev_gen490

will build a function that performs the matching indicated in tpg1, using, if necessary, a491

candidate function that is able to perform matching for tuples smaller than tpg1.492

Figure 8 shows 2 of the equations that capture Mev_gen. For reasons of space, we describe493

terms and patterns avoiding the more verbose concrete syntax of our mechanization. The494
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first equation explains the matching and/or decomposition of a list of terms (cons thd ttl)495

with a list of patterns (cons phd ptl). We describe by comprehension the list of results.496

Note that, to explain this case, we need to consider the approximation function Map that497

Mev_gen receives as its last parameter. We begin by using Map to compute matching and498

decomposition for smaller tuples: tphd = (thd, phd, g1) and tptl = (ttl, ptl, g1). Note that,499

given that these tuples represent a matching/decomposition over a proper sub-term of the500

input term, we consider the original grammar g1 (first parameter of Mev_gen). In order to be501

able to fully evaluate Map, we need to build proofs lthd and lttl of type tphd <
g1
t×p×g tpcons502

and tptl <
g1
t×p×g tpcons, respectively, where tpcons is the original tuple over which we evaluate503

Mev_gen. Then, for each value of type mtch_ev thd and mtch_ev ttl of the results obtained504

from evaluating Map, the algorithm queries if they are decompositions or not, and if it is505

possible to combine these results, using the helper function select.506

The original select helper function from RedexK receives as parameters thd, dhd, ttl and507

d tl. It analyses dhd and d tl: if none of them represent actual decompositions, then the whole508

operation will be considered just a matching of the original list of terms and select must build509

an empty decomposition of the proper type to represent this. If only dhd is a decomposition,510

then the whole operation is interpreted as a decomposition of the original list of terms on511

the head of the list. In that case, select builds a value of type decom_ev (cons thd ttl).512

The remaining equation, that of the in-hole pattern, can be understood on the same513

basis as the previous one, requiring only some explanation the auxiliary function combine: it514

helps in deciding if the result is a decomposition against pattern in-hole, or if it is just a515

match against said pattern, depending on whether dh is a decomposition or not.516

Finally, we define the desired matching/decomposition algorithm, Mev, as the least517

fixed-point of the previous generator function. For reasons of space we do not show its518

definition, but it presents no surprises. The resulting implementation can be seen on file519

./match_impl.v.520

3.3 Semantics for context-sensitive reduction rules521

The last component of RedexK consists in a semantics for context-sensitive reduction rules,522

with which we define semantics relations in Redex. The proposed semantics makes use of523

the introduced notion of matching, to define a new formal system that explains what it524

means for a given term to be reduced, following a given semantics rule. We have mechanized525

the previous formal system, though, for reasons of space, we do not introduce it here in526

detail. The reader is invited to look at the mechanization of this formal system, in module527

./reduction.v.528

3.4 Extra material529

In the README.md file of the repository the interested reader will find the correspondence530

between the source code and this paper. Additionally, besides from the results shown here,531

we included a mechanization of a lambda-calculus with normal-order reduction similar to532

the one presented in §2. It serves mainly to showcase the actual capabilities of Redex that533

are mechanized in the present version of the tool, and how to invoke them to implement a534

reduction-semantics model. We note that the performance of the matching/decomposition535

algorithm is subpar, an issue we plan to tackle in a future iteration of the tool.536

4 Soundness and completeness of matching537
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Theorem completeness_M_ev : ∀ G1 G2 p t sub_t b C,
(G1 |− t : p, G2 | b → In (mtch_pair t (empty_d_ev t) b) (M_ev G1 (t, (p, G2))))
∧
(G1 |− t1 = C [ t2 ] : p , G2 | b → ∃ (ev_decom : {sub_t = t} + {subterm_rel sub_t t}),

In (mtch_pair t (nonempty_d_ev t C sub_t ev_decom) b) (M_ev G1 (t, (p, G2)))).

Theorem from_orig : ∀ G t p b,
non_left_recursive_grammar →
G |− t : p | b → G |− t : p, G | b

with from_orig_decomp : ∀ G C t1 t2 p b,
non_left_recursive_grammar →
G |− t1 = C [ t2 ] : p | b → G |− t1 = C [ t2 ] : p , G | b.

Figure 9 The statement of completeness of Mev and completeness of our formal systems, in Coq.

In the original paper of RedexK they prove the correspondence between the algorithm538

and its specification. In our mechanization we reproduced this result, for the least-fixed-point539

of Mev_gen g (t, p, g’) and our extended definition of matching (§3.2.4). In what follows,540

Mev g (t, p, g’) represents the least-fixed-point of Mev_gen g (t, p, g’). Naturally, for a541

given grammar g , the original intention of matching and decomposition corresponds to542

Mev g (t, p, g). We show the statement of completeness of the algorithm in Figure 9. Note543

that we represent and manipulate results returned from Mev through Coq’s standard library544

implementation of lists. Also, the shape of the tuples of terms, patterns and grammars, is545

the result of the way in which we build our lexicographic product: the product between a546

relation with domain term, and a relation with domain pat × grammar. Completeness can547

be proved by rule induction on the evidences of match and decomposition.548

The converse, the soundness property, is not shown, but it is the expected converse of549

the completeness statement. The proof present no surprises: since we have a well-founded550

recursion over the tuples from term × pat × grammar, we also have an induction principle551

to reason over them.552

We also verified the correspondence between our specifications and the original formal553

systems from the paper. We can’t do it for the general case: we followed the proposal554

of the authors of RedexK, explained in §3.2, and only consider those grammars that are555

non-left recursive. In Coq, we name this predicate non_left_recursive_grammar (see file556

wf_rel.v).557

We show in Figure 9 the completeness result mapping our formal systems with the558

original ones from RedexK. Note the hypothesis non_left_recursive_grammar, and how559

we consider the same grammar G for interpreting the non-terminals.560

For the converse, soundness, we need to restrict the result to those grammars G’ over561

which we begin interpreting the non-terminals to be smaller or equal (gleq) to the original562

one G (see ./verification/match_spec_equiv.v).563

5 Related work564

CoLoR [3] is a mechanization in Coq of the theory of well-founded rewriting relations over565

the set of first-order terms, applied to the automatic verification of termination certificates.566

It presents a formalization of several fundamental concepts of rewriting theory, and the567

mechanization of several results and techniques used by termination provers. Its notion568

of terms includes first-order terms with symbols of fixed and varyadic arity, strings, and569



XX:16 Redex2Coq: towards a theory of decidability of Redex’s reduction semantics

simply typed lambda terms. CoLoR does not implement a notion of a language of patterns570

offering support for context-sensitive restrictions, something that is ubiquitous in a Redex571

mechanization, to define semantics rules, formal systems and meta-functions over the terms572

of a given language. Also, Redex is not focused on well-founded rewritting relations, but,573

rather, in arbitrary relations over terms of a language. In order to use CoLoR to explain574

Redex, it would require a considerable amount of work, extending and/or modifying CoLoR,575

to be able to encode the semantics of Redex’s language of patterns.576

Sieczkowski et. al present in [18] an implementation in Coq of the technique of refocusing,577

with which it is possible to extract abstract machines from a specification of a reduction578

semantics. The derivation method is proved correct, in Coq, and the final product is a generic579

framework that can be used to obtain interpreters (in terms of abstract machines), from a580

given reduction semantics that satisfies certain characteristics. In order to characterize a581

reduction semantics that can be automatically refocused (i.e., transformed into a traditional582

abstract machine), the authors provide an axiomatization capturing the sufficient conditions.583

Hence, the focus is put in allowing the representation of certain class of reduction semantics584

(in particular, deterministic models for which refocusing is possible), rather than allowing585

for the mechanization of arbitrary models (even non-deterministic semantics), as is the case586

with Redex. Nonetheless, future development of our tool could take advantage of this library,587

since testing of Redex’s models that are proved to be deterministic could make use of an588

optimization as refocusing, to extract interpreters that run efficiently, in comparison with589

the expensive computation model of reduction semantics.590

Matching logic is a formalism used to specify logical systems and their properties. It is591

mechanized in Coq in [2], including its syntax, semantics, formal system and the corresponding592

soundness result. At its heart, matching logic has a notion of patterns and pattern matching.593

Redex could be explained as a matching logic, with formulas that represent Redex’s patterns594

to capture languages and relations, and whose model refer to the terms (or structures595

containing terms) that match against these patterns. While this representation of Redex596

could be of interest for the purpose of studying the underlying semantics of Redex, this is597

not satisfactory for the purpose of providing the user with a direct explanation in Coq of598

their mechanization in Redex.599

6 Conclusion600

We adapted RedexK [5] to be able to mechanize it into Coq. In particular, we obtained a601

primitive recursive expression of its matching algorithm; we introduced modifications to its602

language of terms and patterns, to better adapt it to the future inclusion of features of Redex603

absent in RedexK; we reproduced the soundness results shown in [5], but adapted to our604

mechanization, while also verifying the expected correspondence between our adapted formal605

systems, that capture matching and decomposition, and the originals from the cited work.606

A natural next step in our development could consist in the addition of automatic routines607

to transpile a Redex model into an equivalent model in Coq. Also, extending the language608

with capabilities of Redex absent in RedexK would be of vital importance to allow our tool609

to be of practical use. Our proposed modification for the language of patterns and terms,610

already implemented in this first iteration, enables us to easily include the Kleene’s closure611

operator. This could be a reasonable next step in increasing the set of Redex’s features612

captured by our mechanization.613
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